{VERSION 2 3 "APPLE_PPC_MAC" "2.3" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 256 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 }{CSTYLE "" -1 257 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 }{CSTYLE "" -1 258 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 }{CSTYLE "" -1 259 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 } {CSTYLE "" -1 260 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 }{CSTYLE "" -1 261 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 262 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Text \+ Output" -1 2 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 0 0 0 0 0 1 3 0 0 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 1" 0 3 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 0 0 0 0 0 0 0 }1 0 0 0 6 6 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 2" 3 4 1 {CSTYLE "" -1 -1 "" 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 4 4 0 0 0 0 0 0 -1 0 }{PSTYLE "Warning" 2 7 1 {CSTYLE "" -1 -1 "" 0 1 0 0 255 1 0 0 0 0 0 0 1 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 11 12 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 } 1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 256 1 {CSTYLE "" -1 -1 " " 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {SECT 0 {PARA 3 "" 0 "" {TEXT -1 43 "CorrigŽ du TD 3 : ArithmŽ tique et polyn™mes" }}{PARA 256 "" 0 "" {TEXT -1 18 "Jean SŽbastien RO Y" }}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 9 "Polyn™mes" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 34 "PrŽliminaire utile dans la suite :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "with(numtheory):" }}{PARA 7 "" 1 " " {TEXT -1 33 "Warning, new definition for order" }}}{SECT 0 {PARA 4 " " 0 "" {TEXT -1 27 "Une factorisation difficile" }}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 24 "factor(x^2458+x^1229+1);" }}{PARA 7 "" 1 "" {TEXT -1 32 "Warning, computation interrupted" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 54 "Manifestement Maple n'y arrive pas. Que dire de 1229 ? " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "isprime(1229);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#%%trueG" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 95 "C'est probablement un nombre premier (pas sžr, car isprim e est un test probabiliste). De plus :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "2*1229;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"%eC" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 74 "Factorisons donc quelques polyn™me s de la forme x^2p+x^p+1 avec p premier." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 53 "seq(factor(x^(2*p)+x^p+1),p=seq(ithprime(i),i=3..5)); " }}{PARA 12 "" 1 "" {XPPMATH 20 "6%*&,(*$%\"xG\"\"#\"\"\"F&F(F(F(F(,0 *$F&\"\")F(*$F&\"\"(!\"\"*$F&\"\"&F(*$F&\"\"%F.*$F&\"\"$F(F&F.F(F(F(*& F$F(,4*$F&\"#7F(*$F&\"#6F.*$F&\"\"*F(F*F.*$F&\"\"'F(F1F.F3F(F&F.F(F(F( *&F$F(,@*$F&\"#?F(*$F&\"#>F.*$F&\"# " 0 "" {MPLTEXT 1 0 16 "cyclotomic(3,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,(*$%\"xG\"\"#\"\"\"F%F'F'F'" }}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 11 "Tiens donc." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 49 "seq(cyclotomic(3*p,x),p=seq(ithprime(i),i=3..5));" }}{PARA 12 "" 1 "" {XPPMATH 20 "6%,0*$%\"xG\"\")\"\"\"*$F%\"\"(!\"\"*$F%\"\"&F'*$F% \"\"%F**$F%\"\"$F'F%F*F'F',4*$F%\"#7F'*$F%\"#6F**$F%\"\"*F'F$F**$F%\" \"'F'F-F*F/F'F%F*F'F',@*$F%\"#?F'*$F%\"#>F**$F%\"# " 0 "" {MPLTEXT 1 0 32 "expand((x^(2*p)+x^p+1) *(x^p-1));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&*$)%\"xG%\"pG\"\"$\"\" \"!\"\"F)" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 44 "Ok : voir la propriŽ tŽ donnŽe dans l'ŽnoncŽ." }}}}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 21 "Un \+ peu d'arithmŽtique" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 60 "VŽrifions la propriŽtŽ proposŽe pour de petites valeurs de n" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "seq(n*(n^6-1) mod 7,n=1..10);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6,\"\"!F#F#F#F#F#F#F#F#F#" }}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 33 "Tout va bien. On factorise donc :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "Factor(n*(n^6-1)) mod 7;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*0%\"nG\"\"\",&F$F%\"\"'F%F%,&F$F%\"\"&F%F%,&F$F%\"\"#F %F%,&F$F%\"\"%F%F%,&F$F%\"\"$F%F%,&F$F%F%F%F%" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 69 "Ok. Le produit de 7 entiers consŽcutif est forcement d ivisible par 7." }}{PARA 0 "" 0 "" {TEXT -1 87 "Bien noter l'utilisati on de Factor et non pas de factor. Ici c'est 'mod' qui travaille." }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "factor(n*(n^6-1)) mod 7;" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#*,%\"nG\"\"\",&F$F%\"\"'F%F%,&F$F%F%F% F%,(*$F$\"\"#F%F$F%F%F%F%,(F*F%F$F'F%F%F%" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 43 "Ce n'est pas vraiment le rŽsultat souhaitŽ." }}{PARA 0 " " 0 "" {TEXT -1 16 "Et avec msolve ?" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "msolve(n*(n^6-1)=0,7);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#<#/%\"nGF%" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 30 "Ok : Tout ent ier est solution." }}}}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 41 "Racines ra tionnelles de polyn™mes de Z[X]" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 55 "si p/q irrŽductible est racine de an*x^n+...+a0 alors :" }}{PARA 0 " " 0 "" {TEXT -1 54 "an*p^n=-q*(a(n-1)*p^(n-1)+...+a0*q^n-1) c'est ˆ di re :" }}{PARA 0 "" 0 "" {TEXT -1 78 "q divise an*p^n. Or q est premier avec p et donc avec p^n et donc q divise an." }}{PARA 0 "" 0 "" {TEXT -1 20 "De meme p divise a0." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 128 "Application : Faisons une fonction qui renvoie tous les nombres r Žpondant ˆ la condition nŽcessaire que l'on vient de dŽmontrer." }} {PARA 0 "" 0 "" {TEXT -1 12 "Un exemple :" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 25 "poly:=27*(x-4/3)*(x-7/9);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%polyG,$*&,&%\"xG\"\"\"#!\"%\"\"$F)F),&F(F)#!\"(\"\"* F)F)\"#F" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "expand(poly);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,(*$%\"xG\"\"#\"#FF%!#d\"#G\"\"\"" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "lcoeff(poly,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"#F" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "tcoeff(poly,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"#G" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "divisors(28);" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#<(\"\"\"\"\"#\"\"%\"\"(\"#9\"#G" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 18 "D'ou la fonction :" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 101 "possibles:= (p,x) -> \{seq(seq(seq(s*i/j,j=di visors(lcoeff(p,x))),i=divisors(tcoeff(p,x))),s=\{-1,1\})\}:" }}{PARA 7 "" 1 "" {TEXT -1 42 "Warning, `s` in call to `seq` is not local" }} {PARA 7 "" 1 "" {TEXT -1 42 "Warning, `i` in call to `seq` is not loca l" }}{PARA 7 "" 1 "" {TEXT -1 42 "Warning, `j` in call to `seq` is not local" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "possibles(poly,x) ;" }}{PARA 12 "" 1 "" {XPPMATH 20 "6# " 0 "" {MPLTEXT 1 0 33 "estnul :=(v,p,x) -> subs(x=v,p)=0:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 14 "Et on utilise " }{TEXT 261 6 "select" }{TEXT -1 67 " pour ne prendre dan s les possibles (poss) que les vraies racines :" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 47 "vraies:= (p,x,poss) -> select(estnul,poss,p,x) :" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 20 "On combine le tout :" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 53 "toutesracines := (p,x) -> vr aies(p,x,possibles(p,x)):" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 10 "RŽsu ltat :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "toutesracines(pol y,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#<$#\"\"%\"\"$#\"\"(\"\"*" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 7 "Great !" }}}}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 22 "Fractions rationnelles" }}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 33 "DŽcomposition en ŽlŽments simples" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 42 "q:=(x^3+x^2-x+1)/(-3*x+7*x^2-3*x^3+7*x^4);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"qG*&,**$%\"xG\"\"$\"\"\"*$F(\"\"#F *F(!\"\"F*F*F*,*F(!\"$F+\"\"(F'F/*$F(\"\"%F0F-" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 21 "convert(q,parfrac,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,(*$%\"xG!\"\"#F&\"\"$*$,&F%\"\"(!\"$\"\"\"F&#\"$V\"\"# ()*&,&F(F-F%F+F-,&F-F-*$F%\"\"#F-F&#F-\"#H" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 84 "Avouons le : la dŽcomposition en ŽlŽments simple n'est pa s un sujet trs passionant." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "convert(q,fullparfrac,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&*$% \"xG!\"\"#F&\"\"$-%$SumG6$*&,(#\"$&f\"%BD\"\"\"%'_alphaG#!\"$\"#e*$F2 \"\"##\"$\"e\"%Y]F1,&F%F1F2F&F&/F2-%'RootOfG6#,*F4F1%#_ZG\"\"(*$FAF7F4 *$FAF(FBF1" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "convert(\",ra dical);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,**$%\"xG!\"\"#F&\"\"$*$,&F %\"\"\"#!\"$\"\"(F+F&#\"$V\"\"$4'*&,&#F.\"#eF+%\"IG#F-F5F+,&F%F+F6F&F& F+*&,&F4F+F6#F(F5F+,&F%F+F6F+F&F+" }}}}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 15 "Suites de Sturm" }}{PARA 0 "" 0 "" {TEXT -1 68 "Se rŽfŽrer ˆ l' annexe une description plus mathŽmatique du problme." }}{EXCHG {PARA 0 "" 0 "" {TEXT 256 12 "Question 1 :" }{TEXT -1 44 " Il suffit de divi ser par le PGCD de P et P'" }}{PARA 0 "" 0 "" {TEXT -1 20 "Prenons un \+ exemple :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "poly:=(x-1)^3* (x-2)^4*(x-3)^5;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%polyG*(,&%\"xG \"\"\"!\"\"F(\"\"$,&F'F(!\"#F(\"\"%,&F'F(!\"$F(\"\"&" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 12 "La fonction " }{TEXT 262 7 "simples" }{TEXT -1 44 " divise un polynome P par le PGCD de P et P'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 45 "simples:=(p,x) -> expand(p/gcd(p,diff(p,x))): " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "factor(simples(poly,x)) ;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*(,&%\"xG\"\"\"!\"\"F&F&,&F%F&!\" #F&F&,&F%F&!\"$F&F&" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 257 12 "Question \+ 2 :" }{TEXT -1 48 " Il s'agit de l'agorithme d'Euclide (300 av JC)." } }}{EXCHG {PARA 0 "" 0 "" {TEXT 258 12 "Question 3 :" }{TEXT -1 72 " Ex primer la relation de rŽcurence sans modulo et remplacer Pk(x) par 0. " }}}{EXCHG {PARA 0 "" 0 "" {TEXT 259 12 "Question 4 :" }{TEXT -1 77 " Sturm(P,x) ne change de valeur que pour un x pour lequel un des Pk s' annule." }}{PARA 0 "" 0 "" {TEXT -1 219 "Mais comme quand un Pk s'annu le, pour k>0, Pk-1 et Pk+1 ont un signe different, peu importe comment Pk se comporte autour de x, Sturm(P,x) ne change pas de valeur. Ainsi le seul changement possible est pour P0(x)=P(x)=0" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 260 12 "Question 5 :" }{TEXT -1 126 " Quand x cro”t, au \+ moment o P(x) s'annule, Sturm(P,x) decroit de 1 (quelque soit le sign e de P'). D'o la propriŽtŽ cherchŽe." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 12 "Appliquons :" }}{PARA 0 "" 0 "" {TEXT -1 87 "D'abord, une fonction recusive renvoyant la suite de sturm a partir d'un certain r ang :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 100 "SuiteDeSturmAPCR: =proc(p0,p1,x);if p1=0 then p0 else p0,SuiteDeSturmAPCR(p1,-rem(p0,p1, x),x) fi;end:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 25 "Puis son initial isation :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 79 "SuiteDeSturm:= (p,x) -> [SuiteDeSturmAPCR(simples(p,x),diff(simples(p,x),x),x)]:" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 12 "Un exemple :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "SuiteDeSturm(poly,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7&,**$%\"xG\"\"$\"\"\"*$F&\"\"#!\"'F&\"#6F+F(,(F)F'F&!# 7F,F(,&#!\"%F'F(F&#F*F'F(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 69 "Une \+ version lŽgrement modifiŽe pour avoir les changements de signe :" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 122 "SignesSturmAPCR:=proc(p0,p1 ,x); if p1=0 then 0 else abs(signum(p0)-signum(p1))+SignesSturmAPCR(p1 ,-rem(p0,p1,x),x) fi;end:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 77 "SignesSturm:=(p,x) -> SignesSturmAPCR(simples(p,x),diff(simples(p, x),x),x)/2:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 9 "Exemple :" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "SignesSturm(poly,x);" }} {PARA 12 "" 1 "" {XPPMATH 20 "6#,(-%$absG6#,&-%'signumG6#,**$%\"xG\"\" $\"\"\"*$F-\"\"#!\"'F-\"#6F2F/F/-F)6#,(F0F.F-!#7F3F/!\"\"#F/F1-F%6#,&F 4F/-F)6#,&F-F/!\"#F/F8F9-F%6#,&F=F/F8F/F9" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 20 "spoly:=unapply(\",x):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "spoly(-10);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"$ " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "spoly(3/2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "spoly(5/2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"\"" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "spoly(10);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"!" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 40 "Calcul ons le nombre de racines rŽelles :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 55 "limit(spoly(x),x=-infinity)-limit(spoly(x),x=infinity );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"$" }}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 8 "The End." }}}}}{MARK "3 29 0 0" 8 }{VIEWOPTS 1 1 0 1 1 1803 }