{VERSION 3 0 "APPLE_PPC_MAC" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Text Output" -1 2 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 0 0 0 0 0 1 3 0 0 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 1" 0 3 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 0 0 0 0 0 0 0 }1 0 0 0 6 6 0 0 0 0 0 0 -1 0 }{PSTYLE "Warning" 2 7 1 {CSTYLE "" -1 -1 "" 0 1 0 0 255 1 0 0 0 0 0 0 1 0 0 } 0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {SECT 0 {PARA 3 "" 0 "" {TEXT -1 23 "TD 4 : Algbre linaire" }}{PARA 0 "" 0 "" {TEXT -1 27 "Jean-Sbastien ROY, 1997-98" }}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 10 "Exercice 1" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 51 "En prvision de ce qui va suivre, chargeons linalg." }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "restart:with(linalg):" }} {PARA 7 "" 1 "" {TEXT -1 32 "Warning, new definition for norm" }} {PARA 7 "" 1 "" {TEXT -1 33 "Warning, new definition for trace" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 35 "Dfinissons A, B et la fonction u \+ :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "A:=X^4-1;B:=X^4-X;" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"AG,&*$%\"XG\"\"%\"\"\"!\"\"F)" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"BG,&*$%\"XG\"\"%\"\"\"F'!\"\"" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "u:=y->rem(A*y,B,X);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"uGR6#%\"yG6\"6$%)operatorG%&arrowG F(-%$remG6%*&%\"AG\"\"\"9$F1%\"BG%\"XGF(F(6\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 45 "On prend deux polynomes gnriques P1 et P2 :" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 48 "P1:=add(a.i*X^i,i=0..3);P2:= add(b.i*X^i,i=0..3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#P1G,*%#a0G \"\"\"*&%#a1GF'%\"XGF'F'*&%#a2GF'F*\"\"#F'*&%#a3GF'F*\"\"$F'" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#P2G,*%#b0G\"\"\"*&%#b1GF'%\"XGF'F'*&%#b2G F'F*\"\"#F'*&%#b3GF'F*\"\"$F'" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 34 " Et on vrifie que u est linaire :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 41 "expand(u(l1*P1+l2*P2)-l1*u(P1)-l2*u(P2));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"!" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 51 "Calcul direct des coefficients de la matrice de u :" }}{PARA 0 "" 0 "" {TEXT -1 76 "A la ligne i, colonne j, on trouve le coefficient de X^(i-1) dans u(X^(j-1))" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 48 "U:=matrix(4,4,(i,j) -> coeff(u(X^(j-1)),X,i-1));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"UG-%'MATRIXG6#7&7&!\"\"\"\"!F+F+7&\"\"\"F*F+F-7&F+F -F*F+7&F+F+F-F*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 11 "Son noyau :" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "kernel(U);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#<#-%'VECTORG6#7&\"\"!\"\"\"F)F)" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 80 "Que l'on peut visualiser de maniere plus agrab le avec une fonction auxiliaire :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 78 "vect2poly:= proc(v,x) local i; add(v[i]*x^(i-1),i=1.. op(2,op(2,eval(v)))) end:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "map(vect2poly,kernel(U),X);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#<#, (%\"XG\"\"\"*$F%\"\"#F&*$F%\"\"$F&" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 39 "Une base de son image (avec colspace) :" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 29 "map(vect2poly,colspace(U),X);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#<%,&*$%\"XG\"\"#\"\"\"*$F&\"\"$!\"\",&F&F(F)F+,&F( F(F)F+" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 39 "Ses valeur propre et ve cteurs propres :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "eigenve cts(U);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6&7%,&#!\"$\"\"#\"\"\"*&%\"IG F(\"\"$#F(F'F,F(<#-%'VECTORG6#7&\"\"!F(,&#!\"\"F'F(F)F4,&F4F(F)F,7%,&F %F(F)F4F(<#-F/6#7&F2F(F6F37%F5F(<#-F/6#7&F5F2F2F(7%F2F(<#-F/6#7&F2F(F( F(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 21 "Ou, en plus lisible :" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 101 "map(vp -> print(valeur_prop re=vp[1],multiplicit=vp[2],base=map(vect2poly,vp[3],X)),[eigenvects(U )]):" }}{PARA 11 "" 1 "" {XPPMATH 20 "6%/%.valeur_propreG!\"\"/%-multi plicit|isG\"\"\"/%%baseG<#,&F%F(*$%\"XG\"\"$F(" }}{PARA 11 "" 1 "" {XPPMATH 20 "6%/%.valeur_propreG\"\"!/%-multiplicit|isG\"\"\"/%%baseG< #,(%\"XGF(*$F-\"\"#F(*$F-\"\"$F(" }}{PARA 11 "" 1 "" {XPPMATH 20 "6%/% .valeur_propreG,&#!\"$\"\"#\"\"\"*&%\"IGF)\"\"$#F)F(F-/%-multiplicit|i sGF)/%%baseG<#,(*&,&#!\"\"F(F)F*F6F)%\"XGF)F)*&,&F6F)F*F-F)F8F(F)*$F8F ,F)" }}{PARA 11 "" 1 "" {XPPMATH 20 "6%/%.valeur_propreG,&#!\"$\"\"#\" \"\"*&%\"IGF)\"\"$#F)F(#!\"\"F(/%-multiplicit|isGF)/%%baseG<#,(*&,&F.F )F*F-F)%\"XGF)F)*&,&F.F)F*F.F)F8F(F)*$F8F,F)" }}}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 10 "Exercice 2" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "restart:with(linalg):" }}{PARA 7 "" 1 "" {TEXT -1 32 "Warning, new definition for norm" }}{PARA 7 "" 1 "" {TEXT -1 33 "Warning, new defi nition for trace" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "M:=eval m(matrix([[0,1,3],[3,0,1],[1,3,0]])/4);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"MG-%'MATRIXG6#7%7%\"\"!#\"\"\"\"\"%#\"\"$F-7%F.F*F+7%F+F.F* " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 84 "Apres avoir rentr la matrice M, on regarde numriquement la valeur aproche de M^60" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "evalf(evalm(M^60));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'MATRIXG6#7%7%$\"+LLLLL!#5F(F(F'F'" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 122 "On en dduit donc que M^n doit converger , quand n tends vers l'infini, vers une matrice dont tous les lments valent 1/3." }}{PARA 0 "" 0 "" {TEXT -1 57 "On va la diagonaliser et \+ calculer une matrice de passage." }}{PARA 0 "" 0 "" {TEXT -1 53 "Calcu lons les valeurs propres/vecteurs propres de M :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "E:=[eigenvects(M)];" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"EG7%7%\"\"\"F'<#-%'VECTORG6#7%F'F'F'7%,&#!\"\"\"\"# F'*&%\"IGF'\"\"$#F'F1#F'\"\"%F'<#-F*6#7%F',&F/F'F2F/,&F/F'F2F57%,&F/F' F2#F0F7F'<#-F*6#7%F'F=F<" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 157 "On e xtrait de ce rsultat les valeur propres avec leur multiplicit DANS L E MEME ORDRE que les vecteurs propres calculs prcdement, (c'est tr s important)." }}{PARA 0 "" 0 "" {TEXT -1 106 "Dans l'expression ci-de ssous, e[1] est la valeur propre, et e[2] sa multiplicit. a$b = a,a,. ..,a (b fois)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "V:=map(e-> e[1]$e[2],E);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"VG7%\"\"\",&#!\" \"\"\"#F&*&%\"IGF&\"\"$#F&F*#F&\"\"%,&F(F&F+#F)F0" }}}{EXCHG {PARA 0 " " 0 "" {TEXT -1 29 "D'ou une matrice de passage :" }}{PARA 0 "" 0 "" {TEXT -1 118 "(op(e[3]) est la sequence des vecteurs propres formant u ne base du sous espace propre associ la valeur propre e[1]." }} {PARA 0 "" 0 "" {TEXT -1 100 "e est un lment de E, c'est a dire un t riplet valeur propre/multiplicit/liste de vecteurs propres)" }}{PARA 0 "" 0 "" {TEXT -1 64 "'op' permet d'enlever les accolades/crochets : \+ op([1,2,3])=1,2,3" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "P:=tra nspose(matrix(map(e -> op(e[3]),E)));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"PG-%'MATRIXG6#7%7%\"\"\"F*F*7%F*,&#!\"\"\"\"#F**&%\"IGF*\"\"$#F *F/F-,&F-F*F0F37%F*F4F," }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 92 "La mat rice diagonalise (avec les valeurs propres dans le BON ORDRE), mise la puissance n." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "Nn:=dia g(op(map(e->e^n,V)));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#NnG-%'MATR IXG6#7%7%\"\"\"\"\"!F+7%F+),&#!\"\"\"\"#F**&%\"IGF*\"\"$#F*F1#F*\"\"%% \"nGF+7%F+F+),&F/F*F2#F0F7F8" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 55 "O n calcule la limite de cette matrice quand n-> infini." }}{PARA 0 "" 0 "" {TEXT -1 77 "Noter la prsence de l'evalc qui est indispensable p our que limit fonctionne." }}{PARA 0 "" 0 "" {TEXT -1 71 "evalc mets ( c+I*d)^n sous la forme a(n)+I*b(n) avec a(n) et b(n) rels." }}{PARA 0 "" 0 "" {TEXT -1 67 "Noter aussi qu'il faut appliquer limit sur chaq ue lment avec map." }}{PARA 0 "" 0 "" {TEXT -1 53 "(limit ne fonctio nne pas directement sur une matrice)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 41 "L:=map(e->limit(evalc(e),n=infinity),Nn);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"LG-%'MATRIXG6#7%7%\"\"\"\"\"!F+7%F+F+F+F ," }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 21 "D'ou a limite de M^n:" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "evalm(P &* L &* P^(-1));" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#-%'MATRIXG6#7%7%#\"\"\"\"\"$F(F(F'F'" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 106 "La fonction jordan permet d'ob tenir directement la matrice diagonalise (J) et la matrice de passage (Q) :" }}{PARA 0 "" 0 "" {TEXT -1 44 "(le reste est identique). L'exp ression est :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "J:=jordan( M,'Q'):" }}}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 10 "Exercice 3" }} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "restart:with(linalg):" }} {PARA 7 "" 1 "" {TEXT -1 32 "Warning, new definition for norm" }} {PARA 7 "" 1 "" {TEXT -1 33 "Warning, new definition for trace" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 23 "On entre la matrice A :" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "A:=matrix([[2,1,1],[1,2,1],[ 0,0,3]]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"AG-%'MATRIXG6#7%7%\" \"#\"\"\"F+7%F+F*F+7%\"\"!F.\"\"$" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 26 "Une matrice C quelconque :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "C:=array(1..3,1..3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"CG -%&arrayG6%;\"\"\"\"\"$F(7\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 57 "L a matrice suivante doit etre nulle si C commute avec A :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "N:=evalm(C &* A - A &* C);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"NG-%'MATRIXG6#7%7%,(&%\"CG6$\"\"\" \"\"#F.&F,6$F/F.!\"\"&F,6$\"\"$F.F2,(&F,6$F.F.F.&F,6$F/F/F2&F,6$F5F/F2 ,,F7F.F+F.&F,6$F.F5F.&F,6$F/F5F2&F,6$F5F5F27%,(F9F.F7F2F3F2,(F0F.F+F2F ;F2,,F0F.F9F.F@F.F>F2FBF27%,&F3F2F;F.,&F3F.F;F2,&F3F.F;F." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 77 "On resoud donc apres avoir converti la ma trice en ensemble (set) d'equation :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "solve(convert(N,set));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#<+/&%\"CG6$\"\"$\"\"#\"\"!/&F&6$F)F(&F&6$\"\"\"F(/&F&6$F(F(,&&F& 6$F0F0F0&F&6$F0F)F0/&F&6$F)F)F5/&F&6$F)F0F7/&F&6$F(F0F*/F7F7/F5F5/F.F. " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 48 "On affecte la matrice C les valeurs trouves :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "assi gn(%);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "eval(C);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'MATRIXG6#7%7%&%\"?G6$\"\"\"F+&F)6$F+\"\"# &F)6$F+\"\"$7%&%\"CGF-&F4F*&F4F07%\"\"!F8,&F5F+F3F+" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 91 "La ou il y a des ' ? ' la valeur est quelconque . On verifie qu'une telle matrice convient :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "map(eval,N);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6# -%'MATRIXG6#7%7%\"\"!F(F(F'F'" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 78 " Soit P un polynome quelconque en A (degr 2 suffit car A est de dimens ion 3) :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "P:=add(a.i*A^i, i=0..2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"PG,(%#a0G\"\"\"*&%#a1G F'%\"AGF'F'*&%#a2GF'F*\"\"#F'" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 125 "On va essayer de trouver des valeurs pour a0, a1, a2 telles que P=C, \+ c'est dire, telles que la matrice suivante est nulle :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "evalm(P-C);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'MATRIXG6#7%7%,*%#a1G\"\"#%#a2G\"\"&&%\"CG6$\"\"\"F0! \"\"%#a0GF0,(F)F0F+\"\"%&F.6$F0F*F1,(F)F0F+\"\"'&F.6$F0\"\"$F17%F3F(F7 7%\"\"!F>,,F)F;F+\"\"*F-F1F5F1F2F0" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 44 "Meme methode que prcdement pour rsoudre :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 33 "solve(convert(%,set),\{a0,a1,a2\});" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#<%/%#a2G,&&%\"CG6$\"\"\"\"\"##!\"\"F+& F(6$F*\"\"$#F*F+/%#a1G,&F'F0F.!\"#/%#a0G,(F'#!\"(F+F.#F0F+&F(6$F*F*F* " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "assign(%);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "evalm(P);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'MATRIXG6#7%7%&%\"CG6$\"\"\"F+&F)6$F+\"\"#&F)6$F+\"\" $7%F,F(F/7%\"\"!F4,&F(F+F,F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "evalm(P-C);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'MATRIXG6#7%7% \"\"!F(F(F'F'" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 13 "Tout va bien." } }}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 10 "Exercice 4" }}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 21 "restart:with(linalg):" }}{PARA 7 "" 1 "" {TEXT -1 32 "Warning, new definition for norm" }}{PARA 7 "" 1 "" {TEXT -1 33 "Warning, new definition for trace" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 30 "Les fonctions intermdiaires :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 73 "poly2vect:= proc(p,d) local i: [seq(coeff(p,i ndets(p)[1],i),i=0..d)] end:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 78 "vect2poly:= proc(v,x) local i: add(v[i]*x^(i-1),i=1..op(2,op(2,e val(v)))) end:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 24 "La fonction pri ncipale :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 147 "sompoly:= p - > vect2poly(linsolve(vandermonde([seq(i,i=0..degree(p)+1)]),[seq(add(s ubs(indets(p)[1]=j,p),j=0..i),i=0..degree(p)+1)]),indets(p)[1]);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%(sompolyGR6#%\"pG6\"6$%)operatorG%&a rrowGF(-%*vect2polyG6$-%)linsolveG6$-%,vandermondeG6#7#-%$seqG6$%\"iG/ F9;\"\"!,&-%'degreeG6#9$\"\"\"FBFB7#-F76$-%$addG6$-%%subsG6$/&-%'indet sGF@6#FB%\"jGFA/FQ;F " 0 "" {MPLTEXT 1 0 13 "sompoly(X^2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #,(%\"XG#\"\"\"\"\"'*$)F$\"\"#\"\"\"#F&F**$)F$\"\"$F+#F&F/" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 35 "Soit sous la forme plus classique :" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "factor(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*(%\"XG\"\"\",&F%F&F&F&F&,&F%\"\"#F&F&F&#F&\"\"'" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 12 "Dtaillons :" }}{PARA 0 "" 0 " " {TEXT -1 84 "On cherche rsoudre le systme suivant (en a(0)..a(n+ 1), ou n est le degr de P) :" }}{PARA 0 "" 0 "" {TEXT -1 65 "a(0)+a(1 )*i+...+a(n+1)*i^(n+1)=sum(P(j),j=0..i) pour i de 0 n+1" }}{PARA 0 " " 0 "" {TEXT -1 62 "La matrice de ce systme est donc une matrice de v andermonde :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "p:=X^3:" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "vandermonde([seq(i,i=0..degr ee(p)+1)]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'matrixG6#7'7'\"\"\" \"\"!F)F)F)7'F(F(F(F(F(7'F(\"\"#\"\"%\"\")\"#;7'F(\"\"$\"\"*\"#F\"#\") 7'F(F-F/\"#k\"$c#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 115 "L'indetermi ne de P est indets(P)[1] (ici X) et l'on doit calculer la valeur de s um(P(j),j=0..i) pour i de 0 n+1:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "subs(indets(p)[1]=j,p);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*$)%\"jG\"\"$\"\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "add(%,j=0..3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"#O" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 59 "[seq(add(subs(indets(p)[1]=j,p),j=0 ..i),i=0..degree(p)+1)];" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7'\"\"!\" \"\"\"\"*\"#O\"$+\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 35 "On aurait \+ pu crire, avec unapply :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 63 "[seq(add(unapply(p,indets(p)[1])(j),j=0..i),i=0..degree(p)+1)];" } }{PARA 11 "" 1 "" {XPPMATH 20 "6#7'\"\"!\"\"\"\"\"*\"#O\"$+\"" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 90 "On rsoud alors le systme avec li nsolve, la solution etant les coefficients a(0)..a(n+1)." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 108 "linsolve(vandermonde([seq(i,i=0..d egree(p)+1)]),[seq(add(subs(indets(p)[1]=j,p),j=0..i),i=0..degree(p)+1 )]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'vectorG6#7'\"\"!F'#\"\"\"\" \"%#F)\"\"#F(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 32 "Que l'on convert it en polynome :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "vect2po ly(%,indets(p)[1]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,(*$)%\"XG\"\"# \"\"\"#\"\"\"\"\"%*$)F&\"\"$F(#F*F'*$)F&F+F(F)" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 10 "factor(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6# ,$*&)%\"XG\"\"#\"\"\"),&F&\"\"\"F+F+F'F(#F+\"\"%" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}}{MARK "4 25 0 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 }