{VERSION 3 0 "APPLE_PPC_MAC" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 256 "" 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 257 "" 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 258 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 259 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 } {CSTYLE "" -1 260 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 261 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 262 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 263 "" 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 1" 0 3 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 0 0 0 0 0 0 0 }1 0 0 0 6 6 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 2" 3 4 1 {CSTYLE "" -1 -1 "" 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 4 4 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Out put" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 11 12 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "M aple Plot" 0 13 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 } 3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 4 256 1 {CSTYLE "" -1 -1 " " 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 1 0 -1 0 } {PSTYLE "" 4 257 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 } 0 0 0 -1 -1 -1 0 0 0 0 1 0 -1 0 }} {SECT 0 {SECT 0 {PARA 3 "" 0 "" {TEXT -1 23 "TD 1 : Etudes de suites" }}{PARA 0 "" 0 "" {TEXT -1 24 "Jean-SŽbastien ROY, 1999" }}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 46 "Ex 1 : Outils ŽlŽmentaires d'Žtude d'une \+ suite" }}{PARA 0 "" 0 "" {TEXT -1 42 "On considre la suite u(i)=1/i^2 , pour i>0" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 10 "DŽfinition" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 16 "u := i -> 1/i^2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"uGR6#%\"iG6\"6$%)operatorG%&arrowGF(*$9$!\"#F(F(6\"" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 26 "Calcul des premiers termes" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "seq(u(i),i=1..10);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6,\"\"\"#F#\"\"%#F#\"\"*#F#\"#;#F#\"#D#F#\"#O# F#\"#\\#F#\"#k#F#\"#\")#F#\"$+\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 9 "Monotonie" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "d:=simplify (u(i)-u(i-1));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"dG,$*(,&%\"iG\" \"#!\"\"\"\"\"F+F(!\"#,&F(F+F*F+F,F*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 86 "A noter : assume / is ne marchent quasiment JAMAIS. Ici, c'est \+ juste pour le principe." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 " assume(i>=1);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "is(d<0);" } }{PARA 11 "" 1 "" {XPPMATH 20 "6#%%trueG" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 18 "On efface l'assume" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "i:='i';" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"iGF$" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 67 "Trace l'evolution de la suite (bien noter la position des crochets)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 42 "plot([seq([i,u(i)],i=1..10)],style=point);" }}{PARA 13 "" 1 "" {GLPLOT2D 303 212 212 {PLOTDATA 2 "6$-%'CURVESG6$7,7$$\"\"\"\"\"!F(7$$ \"\"#F*$\"1+++++++D!#;7$$\"\"$F*$\"166666666F07$$\"\"%F*$\"1++++++]i!# <7$$\"\"&F*$\"1+++++++SF;7$$\"\"'F*$\"1yxxxxxxFF;7$$\"\"(F*$\"171`Ej\" 3/#F;7$$\"\")F*$\"1+++++]i:F;7$$\"\"*F*$\"1oXB,zcM7F;7$$\"#5F*$\"1++++ +++5F;-%'COLOURG6&%$RGBG$FW!\"\"F*F*-%&STYLEG6#%&POINTG" 1 5 0 1 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 18 "Limite de la suite" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "limit(u(i),i=infinity);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\" \"!" }}}}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 30 "Ex 2 : Convergence d'une sŽrie" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart:" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 85 " Tout d'abord, on dŽfinit une fonc tion renvoyant le terme gŽnŽral du DSE de ln(1+x) :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "terme := (i,x) -> (-1)^(i+1)*x^i/i;" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%&termeGR6$%\"iG%\"xG6\"6$%)operatorG %&arrowGF)*&*&)!\"\",&9$\"\"\"F3F3F3)9%F2F3\"\"\"F2!\"\"F)F)F)" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 51 "Puis on dŽfini une fonction renvoy ant la somme des " }{TEXT 256 1 "n" }{TEXT -1 20 " premiers du DSE en \+ " }{TEXT 257 1 "x" }{TEXT -1 2 " :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 64 "approxLn := proc(n,x) local i;add(evalf(terme(i,x)),i =1..n);end;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%)approxLnGR6$%\"nG%\" xG6#%\"iG6\"F+-%$addG6$-%&evalfG6#-%&termeG6$8$9%/F5;\"\"\"9$F+F+F+" } }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 23 "A noter : on a utilisŽ " }{TEXT 258 3 "add" }{TEXT -1 12 " et non pas " }{TEXT 259 3 "sum" }{TEXT -1 118 ". Le premier effectue la somme numŽrique terme a terme, alors que le second est adaptŽ aux calculs symboliques (quand " }{TEXT 263 1 "n " }{TEXT -1 30 " n'est pas connu par exemple)." }}{PARA 0 "" 0 "" {TEXT -1 24 "De plus, on effectue un " }{TEXT 260 5 "evalf" }{TEXT -1 95 " sur le terme ˆ ajouter, afin de ne jamais conserver de fractions, qui ralentiraient le calcul." }}{PARA 0 "" 0 "" {TEXT -1 44 "Enfin, l 'utilisation d'une variable locale (" }{TEXT 261 5 "local" }{TEXT -1 46 ") n'est pas obligatoire, mais prŽfŽrable avec " }{TEXT 262 3 "add " }{TEXT -1 20 " (raisons obscures)." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 44 "L'approximation de ln(2) fournie par Maple :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "evalf(ln(2));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+1=ZJp!#5" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 33 "Pu is la notre avec 10000 termes :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "approxLn(10000,1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+P=(4 $p!#5" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 104 "Utiliser le DSE de ln(( 1+x)/(1-x)) revient a utiliser le DSE de ln(1+x) et ln(1-x) en x tq (1 +x)/(1-x)=2" }}{PARA 0 "" 0 "" {TEXT -1 11 "On resoud :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "solve((1+x)/(1-x)=2);" }}{PARA 11 " " 1 "" {XPPMATH 20 "6##\"\"\"\"\"$" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 42 "On applique notre formule avec 17 termes :" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 35 "approxLn(17,1/3)-approxLn(17,-1/3);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+/=ZJp!#5" }}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 159 "Le resultat est bien meilleur. L'explication tient dan s le terme en x^i du DSE. Quand x=1/3, il tend trs rapidement vers 0, ce qui n'est pas le cas quand x=1." }}}}{SECT 0 {PARA 256 "" 0 "" {TEXT -1 26 "Ex 3 : RŽcurrence linŽaire" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 35 "Defin ition d'une suite recurrente :" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 208 "'option remember' rends le calcul beaucoup plus rapide, en memori sant toutes les valeurs calculees de la suite, ce qui, pour une suite \+ doublement rŽcursive, Žvite de calculer de nombreuses fois chaque vale ur." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 105 "Attention ˆ l'ordre et ˆ \+ la syntaxe ; d'abord f:=proc ... et ensuite la definition des valeurs \+ initiales." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 53 "f:=proc(n) op tion remember; 10*f(n-1)-16*f(n-2); end:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "f(1):=20:f(2):=-8:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 26 "Calcul des premiers termes" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "seq(f(i),i=1..5);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6' \"#?!\")!$+%!%sQ!&?B$" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 149 "Resolut ion de la recurence (utiliser un nom different pour la suite (ici u ˆ \+ la place de f), sinon maple cherche a calculer sa valeur symboliquemen t)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 56 "rsolve(\{u(n)=10*u(n- 1)-16*u(n-2),u(1)=20,u(2)=-8\},u(n));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&)\"\")%\"nG!\"\")\"\"#F&\"#9" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 71 "Definition non recursive (ne pas mettre de -> quand on utilise una pply)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "u:= unapply(%,n); " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"uGR6#%\"nG6\"6$%)operatorG%&ar rowGF(,&)\"\")9$!\"\")\"\"#F/\"#9F(F(F(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 19 "Calcul de la limite" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "limit(u(n),n=infinity);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$%)infinityG!\"\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 71 "Calcu l d'un equivalent en +infinity (ne pas oublier de mettre un ordre)" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "asympt(u(n),n,2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&)\"\")%\"nG!\"\"-%\"OG6#)\"\"#F&\"\"\"" }} }}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 52 "Ex 4.1 : RŽcurence du type u(n+ 1)=f(u(n)), exemple 1" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "rest art;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "f:= x -> sqrt(3*x-2 );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fGR6#%\"xG6\"6$%)operatorG%& arrowGF(-%%sqrtG6#,&9$\"\"$!\"#\"\"\"F(F(F(" }}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 93 "Ici 'option remember' n'est pas vraiment necessaire (la suite n'est pas doublement recursive)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "u:= n -> f(u(n-1));" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#>%\"uGR6#%\"nG6\"6$%)operatorG%&arrowGF(-%\"fG6#-F$6#,&9$\"\"\"!\"\" F3F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "u(0):=1.5;" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>-%\"uG6#\"\"!$\"#:!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 5 "u(3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+LC2B " 0 "" {MPLTEXT 1 0 18 "seq( u(i),i=1..10);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6,$\"+I)Q6e\"!\"*$\"+. iKc;F%$\"+LC2BF%$\"+W'o+%>F%$\"+5Z`a>F%" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 70 "La fonction marche renvoie les extremites d'un petit segment verti cal." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 42 "marche:= i -> ([u(i ),u(i)],[u(i),u(i+1)]):" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 101 "En tr acant plusieurs marche on cree l'escalier. (bien noter la position des crochets, comme toujours)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "seq(marche(i),i=0..2);" }}{PARA 12 "" 1 "" {XPPMATH 20 "6(7$$\"#:! \"\"F$7$F$$\"+I)Q6e\"!\"*7$F(F(7$F($\"+.iKc;F*7$F-F-7$F-$\"+LC2B " 0 "" {MPLTEXT 1 0 10 "plot([%]);" }}{PARA 13 "" 1 "" {GLPLOT2D 215 147 147 {PLOTDATA 2 "6%-%'CURVESG6$7(7$$\"1+++++++: !#:F(7$F($\"1+++I)Q6e\"F*7$F,F,7$F,$\"1+++.iKc;F*7$F0F07$F0$\"1+++LC2B " 0 "" {MPLTEXT 1 0 35 "p1:=plot([seq(marche (i),i=0..20)]):" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 51 "Avec [f(x),x] \+ on trace simultanement y=f(x) et y=x." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 49 "p2:=plot([f(x),x],x=0.5..2.5,color=[green,blue]):" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "plots[display](\{p1,p2\},sc aling=constrained);" }}{PARA 13 "" 1 "" {GLPLOT2D 335 214 214 {PLOTDATA 2 "6(-%'CURVESG6$7L7$$\"1+++++++:!#:F(7$F($\"1+++I)Q6e\"F*7$ F,F,7$F,$\"1+++.iKc;F*7$F0F07$F0$\"1+++LC2BF*7$FHFH7$FH$\"1+++W'o+%>F*7$FLFL7$FL$ \"1+++5Z`a>F*7$FPFP7$FP$\"1+++$G0c'>F*7$FTFT7$FT$\"1+++Aa.u>F*7$FXFX7$ FX$\"1+++G3V!)>F*7$FfnFfn7$Ffn$\"1+++p)o_)>F*7$FjnFjn7$Fjn$\"1+++l4#*) )>F*7$F^oF^o7$F^o$\"1+++\"Rt;*>F*7$FboFbo7$Fbo$\"1+++j_u$*>F*7$FfoFfo7 $Ffo$\"1+++LMI&*>F*7$FjoFjo7$Fjo$\"1+++nWZ'*>F*7$F^pF^p7$F^p$\"1++++TN (*>F*7$FbpFbp7$Fbp$\"1+++!f9!)*>F*-%'COLOURG6&%$RGBG$\"#5!\"\"\"\"!F_q -F$6$7P7$$\"1+++3RBrm!#;$\"13#p_)Re,P!#<7$$\"1+++W^\"\\)oFfq$\"1^\"R.R *zeDFfq7$$\"1+++zjf)4(Ffq$\"1Q(3G72(*f$Ffq7$$\"1+++'4;[\\(Ffq$\"1+5F*$\"1!Hro0&G+5F *7$$\"1+++vW]V5F*$\"1@Vl[gDj5F*7$$\"1+++NfC&3\"F*$\"1SPAvqf?6F*7$$\"1+ ++!=^J7\"F*$\"1([Y;`O-<\"F*7$$\"1+++#=C#o6F*$\"1284Z4lE7F*7$$\"1+++FpS 17F*$\"1x\\=jg[s7F*7$$\"1+++OD#3D\"F*$\"1*GT^*z!QK\"F*7$$\"1+++xy8!H\" F*$\"1muAj1jn8F*7$$\"1+++OIFL8F*$\"1!)p%fg\\TT\"F*7$$\"1+++4zMu8F*$\"1 +t5Bo1d9F*7$$\"1+++H_?<9F*$\"1-\\ol%Q0]\"F*7$$\"1+++G;cc9F*$\"1\\H^$3y $R:F*7$$\"1+++@G,*\\\"F*$\"1sjLK??!e\"F*7$$\"1+++!o2Ja\"F*$\"1g3)[u=:i \"F*7$$\"1+++%Q#\\\"e\"F*$\"1'H^pNYml\"F*7$$\"1+++;*[Hi\"F*$\"1'GW)Gqw $p\"F*7$$\"1+++qvxl;F*$\"1pi/c1GJ\\W9H,=F*7$$\"1+++3'HKz\"F*$\"1O=U+IRQ=F*7$$\"1+ ++xanL=F*$\"1_6])*H5r=F*7$$\"1+++v+'o(=F*$\"1*>9=:3a!>F*7$$\"1+++S<*f \">F*$\"1$)oc1)of$>F*7$$\"1+++&)Hxe>F*$\"1.^!\\&p$)o>F*7$$\"1+++.o-**> F*$\"1!p8!p*p#**>F*7$$\"1+++TO5T?F*$\"1h1dOPfI?F*7$$\"1+++U9C#3#F*$\"1 ]a-#>e21#F*7$$\"1+++1*3`7#F*$\"1D'yDer=4#F*7$$\"1+++$*zym@F*$\"1rz\\Kh S@@F*7$$\"1+++^j?4AF*$\"1RV.[,>^@F*7$$\"1+++jMF^AF*$\"1y_&HvD.=#F*7$$ \"1+++q(G**G#F*$\"1]#\\CBfn?#F*7$$\"1+++9@BMBF*$\"1yzj;3nOAF*7$$\"1+++ `v&QP#F*$\"1\"oT\\=*3jAF*7$$\"1+++Ol5;CF*$\"1TS`E6#4H#F*7$$\"1+++/UacC F*$\"1;M3unCF*F`fl7$Ff[lFf[l7$$\"1mm\"H!o-**>F*Fdfl7$$\"1++DTO5T?F*Fgfl7$$\"1n mmT9C#3#F*Fjfl7$$\"1++D1*3`7#F*F]gl7$$\"1LLL$*zym@F*F`gl7$$\"1LL$3N1#4 AF*Fcgl7$$\"1nm\"HYt7D#F*Ffgl7$F^^lF^^l7$$\"1mm;9@BMBF*Fjgl7$$\"1LLL`v &QP#F*F]hl7$$\"1++DOl5;CF*F`hl7$$\"1++v.UacCF*Fchl7$Fg_lFg_l-Fip6&F[qF _qF_qF]`l-%+AXESLABELSG6$%!GF[il-%(SCALINGG6#%,CONSTRAINEDG-%%VIEWG6$; $\"\"&F^q$\"#DF^q%(DEFAULTG" 1 2 0 1 0 2 9 1 4 1 1.000000 45.000000 45.000000 0 }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 18 "Les points fixes : " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "solve(f(x)=x,x);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6$\"\"\"\"\"#" }}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 53 "D(f) represente la fonction derivee de la fonction f." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 5 "D(f);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#R6#%\"xG6\"6$%)operatorG%&arrowGF&,$*&\"\"\"F,-%%sqrtG6 #,&9$\"\"$!\"#\"\"\"!\"\"#F2\"\"#F&F&F&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "evalf(D(f)(2));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$ \"+++++v!#5" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 27 "Le point x=2 est a ttractif." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "evalf(D(f)(1)) ;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+++++:!\"*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 20 "Et x=1 est repulsif." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 54 "On choisit une nouvelle valeur initiale pour la suite." } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "u(0):=0.95;" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#>-%\"uG6#\"\"!$\"#&*!\"#" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 35 "p3:=plot([seq(marche(i),i=0..20)]):" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "plots[display](\{p3,p2\},sca ling=constrained);" }}{PARA 13 "" 1 "" {GLPLOT2D 326 206 206 {PLOTDATA 2 "6(-%'CURVESG6$7P7$$\"1+++3RBrm!#;$\"13#p_)Re,P!#<7$$\"1++ +W^\"\\)oF*$\"1^\"R.R*zeDF*7$$\"1+++zjf)4(F*$\"1Q(3G72(*f$F*7$$\"1+++' 4;[\\(F*$\"1+5!#:$\"1!Hr o0&G+5FY7$$\"1+++vW]V5FY$\"1@Vl[gDj5FY7$$\"1+++NfC&3\"FY$\"1SPAvqf?6FY 7$$\"1+++!=^J7\"FY$\"1([Y;`O-<\"FY7$$\"1+++#=C#o6FY$\"1284Z4lE7FY7$$\" 1+++FpS17FY$\"1x\\=jg[s7FY7$$\"1+++OD#3D\"FY$\"1*GT^*z!QK\"FY7$$\"1+++ xy8!H\"FY$\"1muAj1jn8FY7$$\"1+++OIFL8FY$\"1!)p%fg\\TT\"FY7$$\"1+++4zMu 8FY$\"1+t5Bo1d9FY7$$\"1+++H_?<9FY$\"1-\\ol%Q0]\"FY7$$\"1+++G;cc9FY$\"1 \\H^$3y$R:FY7$$\"1+++@G,*\\\"FY$\"1sjLK??!e\"FY7$$\"1+++!o2Ja\"FY$\"1g 3)[u=:i\"FY7$$\"1+++%Q#\\\"e\"FY$\"1'H^pNYml\"FY7$$\"1+++;*[Hi\"FY$\"1 'GW)Gqw$p\"FY7$$\"1+++qvxl;FY$\"1pi/c1GJ\\W9H,=FY7$$\"1+++3'HKz\"FY$\"1O=U+IRQ=FY 7$$\"1+++xanL=FY$\"1_6])*H5r=FY7$$\"1+++v+'o(=FY$\"1*>9=:3a!>FY7$$\"1+ ++S<*f\">FY$\"1$)oc1)of$>FY7$$\"1+++&)Hxe>FY$\"1.^!\\&p$)o>FY7$$\"1+++ .o-**>FY$\"1!p8!p*p#**>FY7$$\"1+++TO5T?FY$\"1h1dOPfI?FY7$$\"1+++U9C#3# FY$\"1]a-#>e21#FY7$$\"1+++1*3`7#FY$\"1D'yDer=4#FY7$$\"1+++$*zym@FY$\"1 rz\\KhS@@FY7$$\"1+++^j?4AFY$\"1RV.[,>^@FY7$$\"1+++jMF^AFY$\"1y_&HvD.=# FY7$$\"1+++q(G**G#FY$\"1]#\\CBfn?#FY7$$\"1+++9@BMBFY$\"1yzj;3nOAFY7$$ \"1+++`v&QP#FY$\"1\"oT\\=*3jAFY7$$\"1+++Ol5;CFY$\"1TS`E6#4H#FY7$$\"1++ +/UacCFY$\"1;M3unCFYFb`l7$FeuFeu7$$\"1mm\"H!o-**>FYFf`l7$$\"1++DTO5T?FYFi`l7$$ \"1nmmT9C#3#FYF\\al7$$\"1++D1*3`7#FYF_al7$$\"1LLL$*zym@FYFbal7$$\"1LL$ 3N1#4AFYFeal7$$\"1nm\"HYt7D#FYFhal7$F]xF]x7$$\"1mm;9@BMBFYF\\bl7$$\"1L LL`v&QP#FYF_bl7$$\"1++DOl5;CFYFbbl7$$\"1++v.UacCFYFebl7$FfyFfy-F[z6&F] zF^zF^zF_z-F$6$7,7$$\"#&*!\"#F^cl7$F^cl$\"+dWa>#*!#57$FbclFbcl7$Fbcl$ \"+?=O^()Fdcl7$FgclFgcl7$Fgcl$\"++wF3zFdcl7$F[dlF[dl7$F[dl$\"+J39.hFdc l7$F_dlF_dl7$%%FAILGFcdl-F[z6&F]z$\"#5!\"\"F^zF^z-%+AXESLABELSG6$Q\"x6 \"%!G-%(SCALINGG6#%,CONSTRAINEDG-%%VIEWG6$;$\"\"&Fhdl$\"#DFhdl%(DEFAUL TG" 1 2 0 1 0 2 9 1 4 1 1.000000 45.000000 45.000000 0 }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 57 "A partir de quelques termes, la suite n'e st plus dŽfinie." }}}}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 50 "Ex 4.2 : RŽ currence du type u(n+1)=R*u(n)*(u(n)-1)" }}{PARA 0 "" 0 "" {TEXT -1 103 "Pour le corrigŽ de cet exercice, on se rŽfrera au corrigŽ du TD \+ sur les suites de 1998 (voir les 5/2)." }}}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 42 "Ex 4.3 : RŽcurrence du type u(n+1)=f(u(n))" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 16 "f:=x->(1+x^2)/2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #>%\"fGR6#%\"xG6\"6$%)operatorG%&arrowGF(,&#\"\"\"\"\"#F.*$)9$F/\"\"\" F-F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "u:= n -> f(u(n- 1));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"uGR6#%\"nG6\"6$%)operatorG %&arrowGF(-%\"fG6#-F$6#,&9$\"\"\"!\"\"F3F(F(F(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 65 "Quelles sont les limites possibles de la suite si el le converge ?" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "solve(f(x) =x,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6$\"\"\"F#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 36 "1 est donc la seule limite possible." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "factor(f(x)-x);" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#,$*$),&%\"xG\"\"\"!\"\"F(\"\"#\"\"\"#F(F*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 36 "f(x)>x donc la suite est croissante." }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 73 "plot([x,f(x),f(x)-x],x=-2..2 ,scaling=constrained,color=[blue,green,red]);" }}{PARA 13 "" 1 "" {GLPLOT2D 396 213 213 {PLOTDATA 2 "6(-%'CURVESG6$7S7$$!\"#\"\"!F(7$$!1 LLL$Q6G\">!#:F,7$$!1nm;M!\\p$=F.F07$$!1LLL))Qj^'***!#;FN7$$!1++++0\"*H\"*FPFR7$$!1++++83&H)FPFU7$$!1LLL3k(p`(FPFX7$$ !1nmmmj^NmFPFen7$$!1ommm9'=(eFPFhn7$$!1,++v#\\N)\\FPF[o7$$!1pmmmCC(>%F PF^o7$$!1*****\\FRXL$FPFao7$$!1+++D=/8DFPFdo7$$!1mmm;a*el\"FPFgo7$$!1p mm;Wn(o)!#!#=F^p7$$\"1Mmm;f`@')F\\pFbp7$$\"1)****\\n Z)H;FPFep7$$\"1lmm;$y*eCFPFhp7$$\"1*******R^bJ$FPF[q7$$\"1'*****\\5a`T FPF^q7$$\"1(****\\7RV'\\FPFaq7$$\"1'*****\\@fkeFPFdq7$$\"1JLLL&4Nn'FPF gq7$$\"1*******\\,s`(FPFjq7$$\"1lmm\"zM)>$)FPF]r7$$\"1*******pfa<*FPF` r7$$\"1HLLeg`!)**FPFcr7$$\"1++]#G2A3\"F.Ffr7$$\"1LLL$)G[k6F.Fir7$$\"1+ +]7yh]7F.F\\s7$$\"1nmm')fdL8F.F_s7$$\"1nmm,FT=9F.Fbs7$$\"1LL$e#pa-:F.F es7$$\"1+++Sv&)z:F.Fhs7$$\"1LLLGUYo;F.F[t7$$\"1nmm1^rZF.Fdt7$$\"\"#F*Fgt-%'COLOURG6&%$RGBGF*F*$\"*++ ++\"!\")-F$6$7S7$F($\"1+++++++DF.7$F,$\"1!z/TpB%HBF.7$F0$\"1DH1x3>(=#F .7$F3$\"1w)y$R16M?F.7$F6$\"1HR>#*oO()=F.7$F9$\"1ije$eV'['***FP7$FR$\" 170!pGjx;*FP7$FU$\"1%[!o)o=/W)FP7$FX$\"1i'))*o1ISyFP7$Fen$\"1g]hsQ],sF P7$Fhn$\"1Ui=ay$Rs'FP7$F[o$\"1^w\")o\")yTiFP7$F^o$\"1/&*>;A%3)eFP7$Fao $\"1we#)3w&fb&FP7$Fdo$\"1n*42'*odJ&FP7$Fgo$\"1%)oa\"[*4P^FP7$Fjo$\"1-] QVytP]FP7$F^p$\"1UTX!\\>++&FP7$Fbp$\"1'=\"ySa;P]FP7$Fep$\"1X^=s,#G8&FP 7$Fhp$\"1T=4=(GBI&FP7$F[q$\"1)4-V0W'\\bFP7$F^q$\"1anFP7$Fgq$\"1UXdukyEsFP7$Fjq$\"17,eA.ZSyFP7$F ]r$\"1b8.[D)4Y)FP7$F`r$\"1/iJNIX4#*FP7$Fcr$\"1!f%e+]b!)**FP7$Ffr$\"15!y6F.7$F\\s$\"1U6ZcC-#G\"F.7$F_s$\"1()p5cC @*Q\"F.7$Fbs$\"1mY7'HZf]\"F.7$Fes$\"1+c;KO#)G;F.7$Fhs$\"1EuMB\\(zu\"F. 7$F[t$\"1tRhSk)=*=F.7$F^t$\"1Ra.ZSDF?F.7$Fat$\"1X*>:P-&y@F.7$Fdt$\"1Va XFO&*HBF.7$FgtFdu-Fjt6&F\\uF*F]uF*-F$6$7S7$F($\"1+++++++XF.7$F,$\"1B\" Qu2NAC%F.7$F0$\"1\"fH7\"*RT-%F.7$F3$\"14ArFXu&y$F.7$F6$\"1is_5,7`NF.7$ F9$\"1HIv2V#*GLF.7$F<$\"1\"eS&*[#fFJF.7$F?$\"1ci?VCuDHF.7$FB$\"1,Fx'yq Ss#F.7$FE$\"1Atu5B@IDF.7$FH$\"1C3Fp+FQBF.7$FK$\"1m\\$R!yZv@F.7$FN$\"14 %\\A\")R#**>F.7$FR$\"1^+pytwH=F.7$FU$\"1[!o))**\\Nn\"F.7$FX$\"1+At2xsP :F.7$Fen$\"1t\"GR--PQ\"F.7$Fhn$\"1\"H&3K*z&f7F.7$F[o$\"1l]FP7$Fbp$\"1BX6\\=,vTFP 7$Fep$\"1Z^=(\\sH]$FP7$Fhp$\"1w^U,/NVGFP7$F[q$\"1*4-Vl#4MAFP7$F^q$\"1e ?.WpkjbF\\p7$Fbs$\"1\\**zX%fMv)F\\p7$Fes$\"1 qEKjqwi7FP7$Fhs$\"1dUZLQ<\"o\"FP7$F[t$\"1$R1G7AUB#FP7$F^t$\"1Axo.%*Q&z #FP7$Fat$\"1`%*>!*H*GY$FP7$Fdt$\"1GWb*>_'oTFP7$Fgt$\"1+++++++]FP-Fjt6& F\\uF]uF*F*-%+AXESLABELSG6$Q\"x6\"%!G-%(SCALINGG6#%,CONSTRAINEDG-%%VIE WG6$;F(Fgt%(DEFAULTG" 1 2 0 1 0 2 9 1 4 1 1.000000 45.000000 45.000000 0 }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 9 "Si u(0)>1" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "u(0):=1.1:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 42 "marche:= i -> ([u(i),u(i)],[u(i),u(i+1)]) :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "p1:=plot([seq(marche(i ),i=0..20)]):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "p2:=plot([ f(x),x],x=-1..2,color=[green,blue]):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "plots[display]([p2,p1],scaling=constrained);" }} {PARA 13 "" 1 "" {GLPLOT2D 370 247 247 {PLOTDATA 2 "6(-%'CURVESG6$7S7$ $!\"\"\"\"!$\"\"\"F*7$$!1*****\\P&3Y$*!#;$\"1V%R=fluO*F07$$!1++Dcx6x() F0$\"1_RN0)*)=&))F07$$!1,+]iTDP\")F0$\"1zhDl_u5$)F07$$!1****\\P\"\\J\\ (F0$\"1\\3%)*>kt!yF07$$!1++DJa5_oF0$\"1(G[?WnvM(F07$$!1,+DcexdiF0$\"1r KNLz)z&pF07$$!1++D1?QUcF0$\"1)oA_tB=f'F07$$!1++D13%f+&F0$\"1YRyn@(HD'F 07$$!1++D\"oS:P%F0$\"1'=\"R'R=b&fF07$$!1+++v@)*=PF0$\"1'Q)*3UT:p&F07$$ !1++](G3U9$F0$\"1%=fxG-V\\&F07$$!1*****\\-\\r\\#F0$\"1BHliwy6`F07$$!1+ ++vGVZ=F0$\"1R:Q6/lq^F07$$!1+++v4J@7F0$\"1sF)[-!eu]F07$$!1,+]iIKFl!#<$ \"1A6=tHI@]F07$$\"19+++DFOB!#=$\"1rf%3HF++&F07$$\"1,+++!R5'fFap$\"1h(z H*pw<]F07$$\"1++vV!QBE\"F0$\"1H\\$o'[nz]F07$$\"1******\\\"o?&=F0$\"1@A h@y]r^F07$$\"1,+vVb4*\\#F0$\"1c&Ro#RF7`F07$$\"1,+DJ'=_6$F0$\"1cV-c$H_[ &F07$$\"1,+]P%y!ePF0$\"1B,7xw:1dF07$$\"1,+v=WU[VF0$\"1k!ziuRa%fF07$$\" 1++]7B>&)\\F0$\"1a/j>rgUiF07$$\"1++v$>:mk&F0$\"1Zhe?\"Fhu7$$\"1+]P/-a[7Fhu$\"1$ Qq4KE%z7Fhu7$$\"1+](=Yb;J\"Fhu$\"1gKLD+Ag8Fhu7$$\"1++]i@Ot8Fhu$\"1QLp9 =1V9Fhu7$$\"1+]PfL'zV\"Fhu$\"1=+:Fhu$\"1!=g:+ t_i\"Fhu7$$\"1++DE&4Qc\"Fhu$\"1D^><,vA5pi\"Fhu$\"1]1G!R =M#=Fhu7$$\"1+++bJ*[o\"Fhu$\"1FH)=ZK%>>Fhu7$$\"1++Dr\"[8v\"Fhu$\"1g.Z3 -hL?Fhu7$$\"1+++Ijy5=Fhu$\"1MuXmNZR@Fhu7$$\"1+]P/)fT(=Fhu$\"1pu;'[PiD# Fhu7$$\"1+]i0j\"[$>Fhu$\"1(=c#oqvrBFhu7$$\"\"#F*$\"1+++++++DFhu-%'COLO URG6&%$RGBGF*$\"*++++\"!\")F*-F$6$7S7$F(F(7$F.F.7$F4F47$F9F97$F>F>7$FC FC7$FHFH7$FMFM7$FRFR7$FWFW7$FfnFfn7$F[oF[o7$F`oF`o7$FeoFeo7$FjoFjo7$F_ pF_p7$FepFep7$F[qF[q7$F`qF`q7$FeqFeq7$FjqFjq7$F_rF_r7$FdrFdr7$FirFir7$ F^sF^s7$FcsFcs7$FhsFhs7$F]tF]t7$FbtFbt7$FgtFgt7$F\\uF\\u7$FauFau7$FfuF fu7$F\\vF\\v7$FavFav7$FfvFfv7$F[wF[w7$F`wF`w7$FewFew7$FjwFjw7$F_xF_x7$ FdxFdx7$FixFix7$F^yF^y7$FcyFcy7$FhyFhy7$F]zF]z7$FbzFbz7$FgzFgz-F\\[l6& F^[lF*F*F_[l-F$6$7L7$$\"1+++++++6FhuF\\_l7$F\\_l$\"1++++++06Fhu7$F__lF __l7$F__l$\"1++++D^56Fhu7$Fc_lFc_l7$Fc_l$\"1+++2!>m6\"Fhu7$Fg_lFg_l7$F g_l$\"1+++/!>M7\"Fhu7$F[`lF[`l7$F[`l$\"1+++I^.J6Fhu7$F_`lF_`l7$F_`l$\" 1+++L-iR6Fhu7$Fc`lFc`l7$Fc`l$\"1+++QrO\\6Fhu7$Fg`lFg`l7$Fg`l$\"1+++4C_ g6Fhu7$F[alF[al7$F[al$\"1+++JhSt6Fhu7$F_alF_al7$F_al$\"1+++u4W)=\"Fhu7 $FcalFcal7$Fcal$\"1+++vf>17Fhu7$FgalFgal7$Fgal$\"1+++lVXF7Fhu7$F[blF[b l7$F[bl$\"1+++4@K`7Fhu7$F_blF_bl7$F_bl$\"1+++b\"3aG\"Fhu7$FcblFcbl7$Fc bl$\"1+++jq8E8Fhu7$FgblFgbl7$Fgbl$\"1+++b(>$z8Fhu7$F[clF[cl7$F[cl$\"1+ ++%\\h7X\"Fhu7$F_clF_cl7$F_cl$\"1+++i*zIb\"Fhu7$FcclFccl7$Fccl$\"1+++% oGgq\"Fhu7$FgclFgcl7$Fgcl$\"1+++OpEb>Fhu7$F[dlF[dl7$F[dl$\"1+++'RM:T#F hu-F\\[l6&F^[l$\"#5F)F*F*-%+AXESLABELSG6$Q\"x6\"%!G-%(SCALINGG6#%,CONS TRAINEDG-%%VIEWG6$;F(Fgz%(DEFAULTG" 1 2 0 1 0 2 9 1 4 1 1.000000 45.000000 45.000000 0 }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 133 "La suit e est croissante, elle ne peut etre majoree car sinon elle convergerai t vers une limite superieure a 1 (ce qui est impossible)" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 12 "Autres cas :" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 24 "assume(x<-1):is(f(x)>1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%%trueG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "x: ='x':" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 62 "Donc si u(0)< -1, u(1)>1 , on est donc ramene au cas precedent." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 72 "Si u(0)=1 ou u(0)=-1, la suite est constante egale a 1 a \+ partir de u(1)." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 13 "Si 0 " 0 "" {MPLTEXT 1 0 28 "assume(x>-1,x<1):is(f(x )<1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%%trueG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "is(f(x)>0);" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#%%trueG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "x:='x':" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 150 "Donc pour tout n > 1 , u(n) est c ompris entre 0 et 1. La suite est croissante majoree par 1, elle conve rge, vers 1 car c'est la seule limite possible." }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 11 "u(0):=-0.2:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "p3:=plot([seq(marche(i),i=0..20)]):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 50 "p4:=plot([f(x),x],x=-0.4..1.2,color=[gree n,blue]):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "plots[display] ([p4,p3],scaling=constrained);" }}{PARA 13 "" 1 "" {GLPLOT2D 380 261 261 {PLOTDATA 2 "6(-%'CURVESG6$7S7$$!1+++++++S!#;$\"1,++++++eF*7$$!1ML LLbC^OF*$\"1JVB(pzlm&F*7$$!1nmmOhzZLF*$\"18Sj[pQgbF*7$$!1MLL`b`1IF*$\" 1oGn,G'>X&F*7$$!1MLLtG,jEF*$\"1`ptc\")\\]F*7$$!1lmm m#Q7]'FX$\"1&)**\\\\I8@]F*7$$!1MLLLvxNMFX$\"1z#HOG-f+&F*7$$\"1O,+++_?: !#>$\"1a!*f:,++]F*7$$\"1&*******zN![$FX$\"1#3/fWcg+&F*7$$\"1(******zu' >oFX$\"1y))=#)RDB]F*7$$\"1kmmmV4_)*FX$\"1`[q\")=`[]F*7$$\"1LLL`MzX8F*$ \"1V<&4+e04&F*7$$\"1LLL8aD^;F*$\"1KJ+AALO^F*7$$\"1+++!H!e1?F*$\"1D3,B# =8?&F*7$$\"1KLL8I5@BF*$\"1`_#*ffPp_F*7$$\"1+++!H%=mEF*$\"1S@TLpUb`F*7$ $\"1+++qKy%*HF*$\"1&f8X5*Q%fF*7$$\"1+++q!R>l%F*$\"1B'\\b&o-#3'F*7$$\"1mmmE8f$)\\F*$ \"1i8cD\"4=C'F*7$$\"1******f0AE`F*$\"1N$)os7V=kF*7$$\"1******>kThcF*$ \"1\"GKSz\"e-mF*7$$\"1******\\ct&)fF*$\"1YSej:X\"z'F*7$$\"1******fo$eM 'F*$\"1LnosA[8qF*7$$\"1JLL8QSpmF*$\"1f_Eht/CsF*7$$\"1,+++1)[,(F*$\"1>G h\"\\F/Y(F*7$$\"1mmm;R$zK(F*$\"1%o^VxI\\o(F*7$$\"1+++!)Q=qwF*$\"1#f]w. 'eTzF*7$$\"1JLLBW@#*zF*$\"1moUpXx$>)F*7$$\"1,++I\"H)G$)F*$\"1Go$Qtp%o% )F*7$$\"1LLLL:$zl)F*$\"1%Q%z@*))zu)F*7$$\"1)*****\\7Z-!*F*$\"1EQNIWA_! *F*7$$\"1ommYRIM$*F*$\"1ZyV3:Yc$*F*7$$\"1mmm13lt'*F*$\"1LhY'*f(*y'*F*7 $$\"1LLLq(=5+\"!#:$\"1H)z#*G>5+\"Fix7$$\"1+++;I%>.\"Fix$\"1)eNT>`C.\"F ix7$$\"1LLL\"p&Qn5Fix$\"1p:.2hlp5Fix7$$\"1mmmUg3*4\"Fix$\"1PBfk]*R5\"F ix7$$\"1+++H_)G8\"Fix$\"1\">V5Z9<9\"Fix7$$\"1+++j`Bl6Fix$\"1rGfDn))y6F ix7$$\"1+++++++7Fix$\"1++++++?7Fix-%'COLOURG6&%$RGBG\"\"!$\"*++++\"!\" )F^[l-F$6$7S7$F(F(7$F.F.7$F3F37$F8F87$F=F=7$FBFB7$FGFG7$FLFL7$FQFQ7$FV FV7$FfnFfn7$F[oF[o7$F`oF`o7$FfoFfo7$F[pF[p7$F`pF`p7$FepFep7$FjpFjp7$F_ qF_q7$FdqFdq7$FiqFiq7$F^rF^r7$FcrFcr7$FhrFhr7$F]sF]s7$FbsFbs7$FgsFgs7$ F\\tF\\t7$FatFat7$FftFft7$F[uF[u7$F`uF`u7$FeuFeu7$FjuFju7$F_vF_v7$FdvF dv7$FivFiv7$F^wF^w7$FcwFcw7$FhwFhw7$F]xF]x7$FbxFbx7$FgxFgx7$F]yF]y7$Fb yFby7$FgyFgy7$F\\zF\\z7$FazFaz7$FfzFfz-F[[l6&F][lF^[lF^[lF_[l-F$6$7L7$ $!1+++++++?F*F\\_l7$F\\_l$\"1+++++++_F*7$F__lF__l7$F__l$\"1++++++_jF*7 $Fc_lFc_l7$Fc_l$\"1*******>&RiuF*7$F[`lF [`l7$F[`l$\"1+++,`@%y(F*7$F_`lF_`l7$F_`l$\"1+++$R+(H!)F*7$Fc`lFc`l7$Fc `l$\"1+++?W!QA)F*7$Fg`lFg`l7$Fg`l$\"1+++dza\"Q)F*7$F[alF[al7$F[al$\"1, ++3t^7&)F*7$F_alF_al7$F_al$\"1+++Yv9B')F*7$FcalFcal7$Fcal$\"1+++!oLzr) F*7$FgalFgal7$Fgal$\"1+++$Q=,!))F*7$F[blF[bl7$F[bl$\"1+++yT5s))F*7$F_b lF_bl7$F_bl$\"1+++G;rN*)F*7$FcblFcbl7$Fcbl$\"1+++:rM#**)F*7$FgblFgbl7$ Fgbl$\"1+++K`6V!*F*7$F[clF[cl7$F[cl$\"1+++Yn*))3*F*7$F_clF_cl7$F_cl$\" 1+++.ASI\"*F*7$FcclFccl7$Fccl$\"1+++?A@o\"*F*7$FgclFgcl7$Fgcl$\"1+++md !G?*F*7$F[dlF[dl7$F[dl$\"1+++*p\"eM#*F*-F[[l6&F][l$\"#5!\"\"F^[lF^[l-% +AXESLABELSG6$Q\"x6\"%!G-%(SCALINGG6#%,CONSTRAINEDG-%%VIEWG6$;$!\"%Fed l$\"#7Fedl%(DEFAULTG" 1 2 0 1 0 2 9 1 4 1 1.000000 45.000000 45.000000 0 }}}}}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 39 "Ex 5 : Recurence ˆ solution polynomiale" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "re start;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 34 "eq1:=n*u(n+2)-5*u (n+1)-(n+1)*u(n);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$eq1G,(*&%\"nG \"\"\"-%\"uG6#,&F'F(\"\"#F(F(F(-F*6#,&F'F(F(F(!\"&*&F0F(-F*6#F'F(!\"\" " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 53 "L'operateur '.' concatene les elements autour de lui." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 6 " a . 2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%#a2G" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 22 "add((a.i)*n^i,i=0..3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,*%#a0G\"\"\"*&%#a1GF%%\"nGF%F%*&%#a2GF%F(\"\"#F%*&%#a3 GF%F(\"\"$F%" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "p:=unapply( %,n);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"pGR6#%\"nG6\"6$%)operator G%&arrowGF(,*%#a0G\"\"\"*&%#a1GF.9$F.F.*&%#a2GF.F1\"\"#F.*&%#a3GF.F1\" \"$F.F(F(6\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 65 "Ne pas se tromper sur l'ordre des parametres de la fonction subs." }}{PARA 0 "" 0 "" {TEXT -1 52 "Ici on substitue une fonction (u) par une autre (p)." }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "subs(u=p,eq1);" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#,(*&%\"nG\"\"\"-%\"pG6#,&F%F&\"\"#F&F&F&-F(6#,&F %F&F&F&!\"&*&F.F&-F(6#F%F&!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "collect(%,n);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,.*&,&%#a2G! \"#%#a3G!\"$\"\"\"%\"nG\"\"#F**&,(%#a1G!\"%F(!\"(F&!\"'F*F+F*F*%#a0GF2 F(!\"&F&F4F/F4" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 117 "Attention. si \+ on avait divisŽ eq1 par n, coeffs ne marcherait pas car l'expresion ne serait pas vraiment un polynome." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "coeffs(%,n);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6%,(%#a 1G!\"%%#a3G!\"(%#a2G!\"',&F(!\"#F&!\"$,*%#a0GF)F&!\"&F(F/F$F/" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "solve(\{%\});" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#<&/%#a3G,$%#a1G\"\"#/F'F'/%#a2G,$F'!\"$/%#a0G\" \"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "subs(%,p(n));" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#,(*&%#a1G\"\"\"%\"nGF&F&*&F%F&F'\"\"#! \"$*&F%F&F'\"\"$F)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "u:=un apply(%,n);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"uGR6#%\"nG6\"6$%)op eratorG%&arrowGF(,(*&%#a1G\"\"\"9$F/F/*&F.F/F0\"\"#!\"$*&F.F/F0\"\"$F2 F(F(6\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "simplify(eq1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"!" }}}}{SECT 0 {PARA 257 "" 0 " " {TEXT -1 25 "Ex 6 : Suite de fonctions" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 42 "Etudi er la convergence simple sur [0,1] de" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "f:= (x,n) -> n*(x^3+x)*exp(-x)/(n*x+1);" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#>%\"fGR6$%\"xG%\"nG6\"6$%)operatorG%&arrowGF)*&* (9%\"\"\",&*$)9$\"\"$F0\"\"\"F4F6F6-%$expG6#,$F4!\"\"F6F0,&*&F/F6F4F6F 6F6F6!\"\"F)F)F)" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 31 "Appellons l l a limite sur ]0;1]" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "l:=un apply(limit(f(x,n),n=infinity),x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6# >%\"lGR6#%\"xG6\"6$%)operatorG%&arrowGF(*&,&*$)9$\"\"#\"\"\"\"\"\"F3F3 F3-%$expG6#,$F0!\"\"F3F(F(F(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 49 "a ille ! Maple est rapide mais peu rigoureux car :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "f(0,n);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\" \"!" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 19 "Tracons les graphes" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 80 "plot([seq(f(x,n),n=1..10),l( x)],x=0..1,scaling=constrained,color=[red$10,blue]);" }}{PARA 13 "" 1 "" {GLPLOT2D 331 228 228 {PLOTDATA 2 "60-%'CURVESG6$7S7$\"\"!F(7$$\"1n mm;arz@!#<$\"1e)e^09#)3#F,7$$\"1LL$e9ui2%F,$\"1$*oRQxUmPF,7$$\"1nmm\"z _\"4iF,$\"1(e\"G:7Q:bF,7$$\"1mmmT&phN)F,$\"1AXJKU2VrF,7$$\"1LLe*=)H\\5 !#;$\"1^.!fg)oW')F,7$$\"1nm\"z/3uC\"FA$\"1df#4p:B%**F,7$$\"1++DJ$RDX\" FA$\"1Lnj4:)*>6FA7$$\"1nm\"zR'ok;FA$\"1$G@2P]h[ J=]3>FA7$ $\"1LLL347TLFA$\"1B)fz6IK*>FA7$$\"1LLLLY.KNFA$\"1\\c4L0kCFA7$$\"1nm;/T1&*\\FA$\"1-8]_ pzDDFA7$$\"1mm\"zRQb@&FA$\"1uxb6m>)e#FA7$$\"1***\\(=>Y2aFA$\"1`8EJSITE FA7$$\"1mm;zXu9cFA$\"1cf$=$p[(p#FA7$$\"1+++]y))GeFA$\"1LY$\\lMVv#FA7$$ \"1****\\i_QQgFA$\"1*[C:a\\)3GFA7$$\"1***\\7y%3TiFA$\"1dsQ-3igGFA7$$\" 1****\\P![hY'FA$\"1y./A4/IFA7$$\"1mm\"zpe*zqFA$\"17QA)*fjlIFA7$$\"1+++D\\'Q H(FA$\"1-30/8r:JFA7$$\"1KLe9S8&\\(FA$\"1b?#[^d?;$FA7$$\"1***\\i?=bq(FA $\"1yTrT\">(4KFA7$$\"1LLL3s?6zFA$\"1E](z)QbbKFA7$$\"1++DJXaE\")FA$\"1B !QCSQFI$FA7$$\"1nmmm*RRL)FA$\"1VW'*fPTZLFA7$$\"1mm;a<.Y&)FA$\"1,**e;FK #R$FA7$$\"1LLe9tOc()FA$\"1JG?%o#3OMFA7$$\"1+++]Qk\\*)FA$\"1m+I+&4cZ$FA 7$$\"1LL$3dg6<*FA$\"1\"fyQ:-,_$FA7$$\"1mmmmxGp$*FA$\"1<]]](f\"fNFA7$$ \"1++D\"oK0e*FA$\"1]6:30.+OFA7$$\"1++v=5s#y*FA$\"1e2=RbRQOFA7$$\"\"\"F ($\"1BWr6WzyOFA-%'COLOURG6&%$RGBG$\"*++++\"!\")F(F(-F$6$7SF'7$F*$\"1e) pxl'>*3%F,7$F0$\"1a>VL=%*[sF,7$F5$\"1h^\"))\\]@/\"FA7$F:$\"1$*)[]LJjK \"FA7$F?$\"1vM+@)))*y:FA7$FE$\"1BRHFA7$FO$ \"1dxRo)RL<#FA7$FT$\"136,k3NTBFA7$FY$\"1,#4'=@'))\\#FA7$Fhn$\"1_Q6iUME EFA7$F]o$\"1U\"3*)*G\")eFFA7$Fbo$\"1!*=#QG'\\\")GFA7$Fgo$\"1(H_Q(4:\"* HFA7$F\\p$\"1NJfYAI%3$FA7$Fap$\"1)>\"H<;0)=$FA7$Ffp$\"1&[i6]d1F$FA7$F[ q$\"1=K'3Xr8O$FA7$F`q$\"1$*fuCAQPMFA7$Feq$\"1\")zFUVn;NFA7$Fjq$\"1H4E* >A')e$FA7$F_r$\"1/@9wtRgOFA7$Fdr$\"1$=`eR_Os$FA7$Fir$\"1#R<,4>$*y$FA7$ F^s$\"1G1wT1*\\&QFA7$Fcs$\"1S?')y7D5RFA7$Fhs$\"1(\\,8)*=\"oRFA7$F]t$\" 1wX,,z3ESFA7$Fbt$\"1*)\\E>&f63%FA7$Fgt$\"1k#QI:;I8%FA7$F\\u$\"1!foI(R1 *=%FA7$Fau$\"14COP)Q\"QUFA7$Ffu$\"1BnV4/F*G%FA7$F[v$\"1h?u3%HXL%FA7$F` v$\"1vfqnE*GQ%FA7$Fev$\"1-%=83ttU%FA7$Fjv$\"1et&QERGZ%FA7$F_w$\"1=!pWk%FA7$Fcx$ \"1-1Mc*))\\o%FA7$Fhx$\"18'QvZz8s%FA7$F]y$\"1!3Dx;(4iZFA7$Fby$\"121$** [?wz%FA7$Fgy$\"1d:'zwjX$[FA7$F\\z$\"1vZ!Q(*>!p[FA7$Faz$\"1J#>c@f]!\\FA Fez-F$6$7UF'7$$\"1LLL3x&)*3\"F,$\"17Pz6/6KJF,7$F*$\"1(z**)))=I3gF,7$$ \"1++D\"y%*z7$F,$\"1*)36z$yGK)F,7$F0$\"1oi:Xy%y/\"FA7$F5$\"1`RY()RS\"[ \"FA7$F:$\"1Np!*fKdc=FA7$F?$\"1eeYR4Yz@FA7$FE$\"1BpTm[?TCFA7$FJ$\"1;N3 EJ5!o#FA7$FO$\"1I$zY_t!)*GFA7$FT$\"1+C))*Hsq%FA7$F]t $\"1xO1b!f%eZFA7$Fbt$\"1F--HI&p![FA7$Fgt$\"1.!\\z'3Z_[FA7$F\\u$\"1doNB v_,\\FA7$Fau$\"1:aM$\\uV%\\FA7$Ffu$\"1qfEL?#*))\\FA7$F[v$\"1&G$ok)y#G] FA7$F`v$\"1m(3'HIEq]FA7$Fev$\"1(zkE[8)3^FA7$Fjv$\"1sco))p:[^FA7$F_w$\" 1@j\"=o2d=&FA7$Fdw$\"1))*RwmsSA&FA7$Fiw$\"1h*Gu;A,E&FA7$F^x$\"1/9o&z%3 'H&FA7$Fcx$\"1Bw$4*R&3L&FA7$Fhx$\"1vG**>%>?O&FA7$F]y$\"1M*pxE:oR&FA7$F by$\"1Q;bi&*4FaFA7$Fgy$\"1f*[at8&eaFA7$F\\z$\"17#\\0#*Hx[&FA7$Faz$\"1N ;d<;>=bFAFez-F$6$7UF'7$Fcdl$\"1Z)>HUMD8%F,7$F*$\"1O9d^WX]yF,7$F[el$\"1 9`)eQl)y5FA7$F0$\"1]QAuO;[8FA7$F5$\"1![,!*3ip(=FA7$F:$\"10RP9))R?BFA7$ F?$\"1vz\\]E<\"p#FA7$FE$\"1bd@e+2%)HFA7$FJ$\"1R_dnC;XKFA7$FO$\"1L;*3$Q 'zZ$FA7$FT$\"1;v)f58*yOFA7$FY$\"1bXQ#**4)eQFA7$Fhn$\"1W%fIFW%)*RFA7$F] o$\"1ylH@s&z8%FA7$Fbo$\"1fa#ycy@E%FA7$Fgo$\"1b^$)*=\\#pVFA7$F\\p$\"1\\ .9A(ftX%FA7$Fap$\"1,OhYy`_XFA7$Ffp$\"1Gu&p5%>EYFA7$F[q$\"1F.1he.0ZFA7$ F`q$\"1p'*)>`e&pZFA7$Feq$\"1#[V5'o[N[FA7$Fjq$\"1V0u\"*[>%*[FA7$F_r$\"1 B&)>'Q6=&\\FA7$Fdr$\"1niiAh)=+&FA7$Fir$\"1?kyvsD`]FA7$F^s$\"1LmgH.4/^F A7$Fcs$\"1l!>/([]Y^FA7$Fhs$\"1ieq<&FA7$F]t$\"1!Ri)R*eXB&FA7$Fbt$\" 1S)[uG/hF&FA7$Fgt$\"1$4NrH#3:`FA7$F\\u$\"1*zM/<'3d`FA7$Fau$\"1dj59#zPR &FA7$Ffu$\"1?\\vvA%>V&FA7$F[v$\"1+FzFXnlaFA7$F`v$\"134)G#zn,bFA7$Fev$ \"1yI<-_vMbFA7$Fjv$\"1WmXF1`obFA7$F_w$\"1]&[+%=y+cFA7$Fdw$\"1HpD/VuLcF A7$Fiw$\"1wZ1$HCZm&FA7$F^x$\"1%*)[jNJcp&FA7$Fcx$\"1!o\"G'p3bs&FA7$Fhx$ \"1b'o]U!G_dFA7$F]y$\"1=OVVO:#y&FA7$Fby$\"17KtU>83eFA7$Fgy$\"1.$)\\J-0 NeFA7$F\\z$\"1jhju.0geFA7$Faz$\"1yIue52')eFAFez-F$6$7WF'7$Fcdl$\"12W#Q #*yA6&F,7$F*$\"1[f'z'=>?'*F,7$F[el$\"1,L;sL578FA7$F0$\"19qQ789G;FA7$$ \"1++voMrU^F,$\"1!*pb6q,[>FA7$F5$\"1(45.(e.NAFA7$$\"1nmmm6m#G(F,$\"157 p85,&\\#FA7$F:$\"1LD*y=^&HFFA7$F?$\"1N9bL+XKJFA7$FE$\"1sJ/&=CNW$FA7$FJ $\"1iLsa*H^r$FA7$FO$\"1WIz.z[_RFA7$FT$\"1)G?XNqM:%FA7$FY$\"1&eM(RR7IVF A7$Fhn$\"1hW(eYy\\Y%FA7$F]o$\"1!*f)*pJj(f%FA7$Fbo$\"1=-*=mA5*p(Q6&FA7$F`q$\"1E%)=P`Jq^FA7$Feq$\"1mKR2i#eFA7$Fjv$\"1\">W%*30a&eFA7$F_ w$\"1Gc&QvHL)eFA7$Fdw$\"1x&ehY6>\"fFA7$Fiw$\"1KV;lx!)QfFA7$F^x$\"1.)HD 1oc'fFA7$Fcx$\"1\\lQ'y`;*fFA7$Fhx$\"1*Rc]<]\\,'FA7$F]y$\"1kD#[*=&4/'FA 7$Fby$\"1tb\\;FcjgFA7$Fgy$\"1&z(f;Q)p3'FA7$F\\z$\"1fyWGSKJhFAFez-F$6$7WF'7$Fcdl$\"1W%*oY&y>2'F,7$F*$\"1*[A'z,u$QFA7$FJ$\"1IS3%eY@6%FA7$FO$\"1^&*RV;(zM%FA7$FT$\"12EjxzD WXFA7$FY$\"1`xXSb'Rr%FA7$Fhn$\"1,,&*HeeT[FA7$F]o$\"13c>`*f`'\\FA7$Fbo$ \"18R(4_?B2&FA7$Fgo$\"1E@cqS+i^FA7$F\\p$\"1rjO860M_FA7$Fap$\"1L2#y@9,J &FA7$Ffp$\"1eO\"HdcxO&FA7$F[q$\"1c:Ga$Q$GaFA7$F`q$\"1HsN?87xaFA7$Feq$ \"1#y4@S1j_&FA7$Fjq$\"1\\egd2ipbFA7$F_r$\"19#4=coveFA7$F\\u$\"1RZN_H+1fFA7$Fau$\"1,q]Jk/LfFA7$Ffu$\"1d%RNZ68'fFA7$ F[v$\"1#HfYz:k)fFA7$F`v$\"1(o*QhjL8gFA7$Fev$\"13\"eC+#=QgFA7$Fjv$\"1EX <0)fO1'FA7$F_w$\"1m\">a&R3)3'FA7$Fdw$\"1tSj&GOJ6'FA7$Fiw$\"1LC!e,cn8'F A7$F^x$\"1Sq?F@QghFA7$Fcx$\"1B$f+epK='FA7$Fhx$\"1E)[$\\*3Q?'FA7$F]y$\" 1mJ]k-vEiFA7$Fby$\"1!)f)RT3nC'FA7$Fgy$\"1SPl-QQniFA7$F\\z$\"1%\\FT%)ol G'FA7$Faz$\"1ahz0Z]1jFAFez-F$6$7YF'7$$\"1mmmT&)G\\a!#=$\"1%QxFY%[aOF,7 $Fcdl$\"1EQS=AC7qF,7$$\"1++]ilyM;F,$\"1*)\\%)>MY55FA7$F*$\"1bDH6b)eH\" FA7$F[el$\"1!)4/n$oEu\"FA7$F0$\"1P)HY)>#[8#FA7$Fehm$\"1g(*QGu'4_#FA7$F 5$\"1b=:;%)>eGFA7$F]im$\"1nRtTY.cJFA7$F:$\"1qIADlU=MFA7$F?$\"1e')HfK$[ &QFA7$FE$\"1f\\()GU&)yTFA7$FJ$\"1)HQtsu>X%FA7$FO$\"1#*)*o<^k#o%FA7$FT$ \"1Myt(yd;([FA7$FY$\"1R)H-H=E.&FA7$Fhn$\"1d5\\L:)>:&FA7$F]o$\"1?^f\"3= iE&FA7$Fbo$\"1\"[RVi0OO&FA7$Fgo$\"1(p])zCBWaFA7$F\\p$\"1)fL>q$G3bFA7$F ap$\"19X1Kk=vbFA7$Ffp$\"1B!Q&)*QRDcFA7$F[q$\"1N4xx!>xn&FA7$F`q$\"1I!)4 J![&>dFA7$Feq$\"1GbY[5[hdFA7$Fjq$\"1ZQwhkC)z&FA7$F_r$\"1/bG=t\"R$eFA7$ Fdr$\"1$oQRx$okeFA7$Fir$\"1v]>sR6'*eFA7$F^s$\"1Fr@\"\\vr#fFA7$Fcs$\"1/ \\1E%HJ&fFA7$Fhs$\"1heD2'=-)fFA7$F]t$\"184\\')RM2gFA7$Fbt$\"1-SZF*oJ.' FA7$Fgt$\"1;K1qPedgFA7$F\\u$\"1'pUP*37%3'FA7$Fau$\"1d\\jG4^2hFA7$Ffu$ \"1]$Qm*Q0KhFA7$F[v$\"1epD*RMR:'FA7$F`v$\"1\\i$3k\"[xhFA7$Fev$\"1n'FA7$Fjv$\"1m$RI=>FA7$F0$\"1%[Z-@+[O#FA7$Fehm$\"1U?)G:Ghx#FA7$F5$\"1/oy' 4-58$FA7$F]im$\"1X!4PF>4W$FA7$F:$\"1j&yvo86r$FA7$F?$\"1?g-2H@aTFA7$FE$ \"1\"3>hg`wZ%FA7$FJ$\"1\"4D\"R39YZFA7$FO$\"1+0(yXK&p\\FA7$FT$\"1Vo#*\\ b$*\\^FA7$FY$\"1#[sE<*Q,`FA7$Fhn$\"1#eOo#p^&FA7$ Fbo$\"1'*pa$Q7]g&FA7$Fgo$\"1q2hZC-xcFA7$F\\p$\"1MlMhweLdFA7$Fap$\"1wo? UI.#z&FA7$Ffp$\"1%>22Or7(y#QgFA7$Fir$\"1D(Gq^2Z1'FA7$F^s$\"1smo(*y(34'FA7$Fcs$\"1Rh7@(3G6' FA7$Fhs$\"1RUv75yNhFA7$F]t$\"1+%H)RZ))ehFA7$Fbt$\"1JFHCl)4='FA7$Fgt$\" 1ERa-O)>?'FA7$F\\u$\"1h\"yT.B\\A'FA7$Fau$\"1!=0,dW_C'FA7$Ffu$\"1*>>=Aq mE'FA7$F[v$\"1&=A`%y&eG'FA7$F`v$\"1,-TqVf1jFA7$Fev$\"1GiJ@FA7$F0$\"1Wq&)z:1\"e#FA7$Fehm$\"1`5cJ#[L,$FA7$F5$\"1?@\"R) H2#Q$FA7$F]im$\"1vhHQ%Q2q$FA7$F:$\"1LNc$G#)e(RFA7$F?$\"1*H#p**)z7U%FA7 $FE$\"1Jq4bWLTZFA7$FJ$\"1ptj1)oK+&FA7$FO$\"1eAJXj==_FA7$FT$\"1no([(\\P *Q&FA7$FY$\"1J=TI29JbFA7$Fhn$\"1xN&R)*QNj&FA7$F]o$\"1MCt.01HdFA7$Fbo$ \"1^V&Q$=M3eFA7$Fgo$\"18Fve\"=B(eFA7$F\\p$\"1Zi)fE&)>#fFA7$Fap$\"1'p:( yursfFA7$Ffp$\"1G\\P3B,5gFA7$F[q$\"1yLEea>[gFA7$F`q$\"180r>-EygFA7$Feq $\"1z!*4(4c!3hFA7$Fjq$\"1OOB%QoR8'FA7$F_r$\"1Ft!3S***ehFA7$Fdr$\"1pq.+ %p0='FA7$Fir$\"1;tS'>`E?'FA7$F^s$\"1$[sT*3fCiFA7$Fcs$\"1EA'f8_IC'FA7$F hs$\"1(3#Gi[[iiFA7$F]t$\"1\\vGP89#G'FA7$Fbt$\"1'4$Hl21,jFA7$Fgt$\"1xs# p0W\">jFA7$F\\u$\"1AhX2S-RjFA7$Fau$\"1K'HY'FA7$Fdw$\"1x:*3D#y!['FA7$Fiw$\"1O[`y%=x\\' FA7$F^x$\"1gK]Lix9lFA7$Fcx$\"1[?[4!)RJlFA7$Fhx$\"1)H#e!p$QYlFA7$F]y$\" 1y?*eD%=jlFA7$Fby$\"1em![BSyd'FA7$Fgy$\"1lx`mu/$f'FA7$F\\z$\"1OwP5m;2m FA7$Faz$\"1jf3T*H=i'FAFez-F$6$7YF'7$F[\\o$\"1c%o6Rb(R^F,7$Fcdl$\"1O=:T x9A(*F,7$Fd\\o$\"1=dS^6n#Q\"FA7$F*$\"1N\\IqF(=v\"FA7$F[el$\"1>WqEJd6BF A7$F0$\"1/-5^xz%y#FA7$Fehm$\"1L-cXbXMKFA7$F5$\"1K%[nf3Rh$FA7$F]im$\"1! oH@!3mQRFA7$F:$\"1.t*Q2Xl@%FA7$F?$\"1$H&=Lx*4m%FA7$FE$\"1()e_jWuv\\FA7 $FJ$\"1b`'f[R*H_FA7$FO$\"1$R3fNsdV&FA7$FT$\"1,`]#\\wvf&FA7$FY$\"1iJ6u \\zHdFA7$Fhn$\"1R5$*\\72CeFA7$F]o$\"1L6#32')3\"fFA7$Fbo$\"19TkqV%>)fFA 7$Fgo$\"1qJw%)H]QgFA7$F\\p$\"1$)e>&He=3'FA7$Fap$\"1spp\\$*eDhFA7$Ffp$ \"1xE7V(et:'FA7$F[q$\"12>yC8b*='FA7$F`q$\"1'4!RQ!yY@'FA7$Feq$\"1M``2)> %RiFA7$Fjq$\"1wLiFd%3E'FA7$F_r$\"1I81ou]\"G'FA7$Fdr$\"16i?7JK*H'FA7$Fi r$\"1\\W.:L3$Q'eL'FA7$Fcs$\"1GFjMAJ^jFA7$Fhs$\"1Q]/%* )ywO'FA7$F]t$\"1)*y%QZcVQ'FA7$Fbt$\"1J]rS@`+kFA7$Fgt$\"1Y.A7%3hT'FA7$F \\u$\"1m)\\WFhLV'FA7$Fau$\"1r@-=%[)[kFA7$Ffu$\"1]UPguPlkFA7$F[v$\"1D)) Q:qM!['FA7$F`v$\"1KO@YDp'\\'FA7$Fev$\"1;NPrh.7lFA7$Fjv$\"1L+TPN,GlFA7$ F_w$\"1GpIrmaVlFA7$Fdw$\"1aClIDoflFA7$Fiw$\"1]DbUs1vlFA7$F^x$\"1<@KA]g !f'FA7$Fcx$\"1C;->8y0mFA7$Fhx$\"1$>\\%>%*[>mFA7$F]y$\"1,=y`8)[j'FA7$Fb y$\"1)p*e_WK[mFA7$Fgy$\"1q;@lh*FA7$F5$\"1 ,m;%=,UV*FA7$F:$\"1='3)48di#*FA7$F?$\"1PgG&>7I5*FA7$FE$\"1^a\\&>6Y'*)F A7$FJ$\"1NcL&z)[I))FA7$FO$\"1?LnBb6,()FA7$FT$\"15\"=]x:6e)FA7$FY$\"1$H %3FY^m%)FA7$Fhn$\"1sjp*e/EP)FA7$F]o$\"1Wthy?Mu#)FA7$Fbo$\"1R)zRs$>$=)F A7$Fgo$\"1t)[z\"43-\")FA7$F\\p$\"1I^G$4FQ.)FA7$Fap$\"1!y%zZG)*ezFA7$Ff p$\"1\">f:?[1!zFA7$F[q$\"13^7[,HQyFA7$F`q$\"1BjB3(Rxy(FA7$Feq$\"19L??* ))pt(FA7$Fjq$\"1N3IhM'Hp(FA7$F_r$\"1K'o\\X87l(FA7$Fdr$\"1][z$Q*R;wFA7$ Fir$\"1KH_8EQ#e(FA7$F^s$\"1G>>e\"p1b(FA7$Fcs$\"1*\\:i8ee_(FA7$Fhs$\"1r pjr$y<](FA7$F]t$\"1V_\")*G_'zuFA7$Fbt$\"1!HcmE10Y(FA7$Fgt$\"1Z+\"e>_TW (FA7$F\\u$\"1'Q%z\\2HGuFA7$Fau$\"1'eu4_FfT(FA7$Ffu$\"1q:iPb_/uFA7$F[v$ \"1.%>dgbcR(FA7$F`v$\"1F3(y**)R(Q(FA7$Fev$\"1A1Zf8(3Q(FA7$Fjv$\"1z'GnO +_P(FA7$F_w$\"1HweK.nqtFA7$Fdw$\"1MLxGY(oO(FA7$Fiw$\"15$3#zy,ktFA7$F^x $\"1$ow]%RzhtFA7$Fcx$\"1/Pl&yy,O(FA7$Fhx$\"1!*QT3m7ftFA7$F]y$\"1r&3]#> LetFA7$Fby$\"1J;n:9\"zN(FA7$Fgy$\"1aQODAodtFA7$F\\z$\"1t8&*3;gdtFA7$Fa z$\"1Z)GM#))edtFA-Ffz6&FhzF(F(Fiz-%(SCALINGG6#%,CONSTRAINEDG-%+AXESLAB ELSG6$Q\"x6\"%!G-%%VIEWG6$;F(Faz%(DEFAULTG" 1 2 0 1 0 2 9 1 4 1 1.000000 45.000000 45.000000 0 }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 43 "Puis la convergence uniforme sur [a,1], a>0" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "simplify(l(x)-f(x,n));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&*&,&*$)%\"xG\"\"#\"\"\"\"\"\"F+F+F+-%$expG6#,$F(!\"\" F+F*,&*&%\"nGF+F(F+F+F+F+!\"\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 84 "Pas d'espoir de maximiser sur un intervale de type [a,1] : maple ne l 'authorise pas." }}{PARA 0 "" 0 "" {TEXT -1 95 "On se rabbat sur la ma ximisation du numerateur seulement (et on fait le denominateur a la ma in)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "maximize(numer(%),x, 0..1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"\"" }}}{EXCHG {PARA 0 " " 0 "" {TEXT -1 52 "Donc l(x)-f(x,n)<1/(na+1) et la convergence unifor me" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 58 "Non-convergence uniforme su r ]0,1], par exemple avec x=1/n" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 34 "limit(l(1/n)-f(1/n,n),n=infinity);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6##\"\"\"\"\"#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 26 "D' ou le resultat souhaite." }}}}}{PARA 3 "" 0 "" {TEXT -1 0 "" }}}{MARK "0 3 11 0 0" 82 }{VIEWOPTS 1 1 0 1 1 1803 }