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We propose a Hilbert-valued perturbed subgradient algorithm with stochastic noises, and provide a convergence
proof for this algorithm, under classical assumptions on the descent direction, and new assumptions on the
stochastic noises. Instead of requiring the stochastic noises to correspond to martingale increments, we only
require these noises to be asymptotically so. Furthermore, the variance of these noises is allowed to grow infinitely
under the control of a decreasing sequence linked with the subgradient stepsizes.
This algorithm can be used to solve stochastic closed loop control problems without any a priori discretization
of the uncertainty such as linear decision rules or tree representations. It can also be used as a way to perform
stochastic dynamic programming without state-space discretization or a priori functional bases (i.e., approximate
dynamic programming). Both problems arise frequently for example in power systems scheduling or option pricing.
This article focuses on the theorical foundations of the algorithm. The reader is directed to articles [BRS05a] and
[BRS05b] for detailed practical experimentations.
In the second part of the paper, we compare this new approach and assumptions with classical ones in the
stochastic approximation literature.
As an application of this general setting, we show how the algorithm to solve infinite dimensional stochastic
optimization problems developed in [BRS05a] is a special case of our perturbed subgradient algorithm with
stochastic noises.
In a last part, we provide a general perturbed subgradient algorithm to solve saddle point problems, and provide
a convergence proof under mild assumptions, in the same spirit as the previous theorem.
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1. Introduction Infinite dimensional optimization problems typically appear in the field of stochas-
tic programming or stochastic dynamic programming. In these research fields, the variable of interest
is functional, since it is either an optimal control variable (feedback) or Bellman functions. Power sys-
tems scheduling as well as option pricing involve this type of difficulties. There is hence a big challenge
in proposing efficient methods for solving infinite dimensional problems. Essentially, solutions of such
problems can only be estimated, and a natural way to solve it is to use stochastic approximation.

The field of stochastic approximation theory actually began with the seminal paper of Robbins and
Monro ([RM51]). Thanks to the various and numerous applications, stochastic approximation has been
studied very thoroughly, and the results, either general or more applied, are today well known, especially
in the case of finite dimensional stochastic approximation (see, e.g., [Lai03] for an historical survey of
stochastic approximation, or [Duf97] for the many branches of this field, or [NH73] for their important
monograph).
A lot of various assumptions on stochastic approximation algorithms already exist, and our goal is
not to make this field more complicated, but to propose some new general assumptions particularly
adapted to stochastic optimal control and infinite dimensional problems. The study of Hilbert-valued
stochastic approximations has also been developed, with for example [Ré73a, Ré73b], [Sa80], and further
[Gol88]. An important progress in this area is the paper [YZ90], showing the convergence and giving
asymptotic properties of an Hilbert-valued Robbins-Monro algorithm under assumptions mimicking
usual finite-dimensional assumptions. However, in all these cases, it is not possible to take into account a
projection onto a convex subset during the iterations of the algorithms. The important work presented in
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[HU75] studies the role of stochastic approximation to solve general Hilbert-valued variational equations,
using both probabilistic and variational arguments. In those infinite-dimensional papers, the noise
assumptions are practically impossible to verify.
Our work aims at bringing some other assumptions to ensure the convergence of stochastic approximation
procedure in the general framework of infinite dimensional Hilbert spaces. It has been motivated by the
practical need to propose efficient ways to solve infinite dimensional stochastic optimization problems.
Indeed, most of the existing results cannot be practically applied in infinite dimensional optimization
problems such as stochastic programming or stochastic dynamic programming. The existing results
are either only available in a finite dimensional setting, or their assumptions are not practically
implementable for infinite dimensional problems.

Convergence proofs of stochastic approximation algorithms exist from various point of views.
Historically, convergence proofs were given through the so called Robbins-Siegmund Lemma (see
[RS71]), and have been then developed by, e.g., [BMP90], or [PT73]. Other approaches have been
developed successfully: in the well known monograph [CK78], a stability analysis is developed and the
method based on the analysis of the underlying ordinary differential equation, introduced by [DF74],
is thoroughly studied. This method has, e.g., been used in [YZ90] to derive their infinite dimensional
convergence results. Following the same direction, thanks to general results on Hilbert-valued mixingales
(see [CW98]), the recent paper [CW02] provides a comprehensive framework for infinite dimensional
Robbins-Monro type procedures. They use modified stochastic approximation with boundedness
properties to derive almost sure convergence results and asymptotic normality. Starting from the same
ideas, we can also mention [HK96] or [Del96], founded on deterministic arguments, but limited to the
finite dimensional case. Another original approach valid for the finite dimensional setting is proposed in
[BT00]. Among those approaches, we will follow in this paper an approach more based on probabilistic
martingale or quasimartingale arguments (see [Mé82]).

In this paper, we focus on the theoretical and general setting of the stochastic approximation
procedure we suggest, centered on the solution of stochastic optimization problems. The paper [HU75]
is the nearest to ours, by the techniques used in the proofs and the problems it adresses, but the results
are significantly different from ours. The biggest difference is the explicit introduction in our paper of
stochastic noises which are not from the beginning martingale increments, but are only asymptotically
so. The assumptions made in [HU75] (Theorem 5.1 and Theorem 5.2) involve the whole sequence of the
noises, and can hence be difficult to verify. Starting from the same ideas, we propose other assumptions
which lead to the same result, but only involve instantaneous perturbations, and are more verifiable
practically.
The results of [CW02] differ from ours in that: they are not robust to any projection, except the
projection on a particular finite dimensional subspace of the original Hilbert space; they focus on mod-
ified stochastic approximation procedures with boundedness properties; they provide more restrictive
assumptions on the perturbation sequences, and need the differentiability of the cost function whereas
we only need subgradients.

Our paper is organized as follows: Section 3 adresses nonsmooth minimization problems. We provide in
subsection 3.1 a convergence proof with general assumptions. In subsection 3.3, we place our result in the
context of stochastic approximation and projected subgradient algorithms, and we especially compare it
with the result of [AIS98]. In subsection 3.4, we show how our results can be used to prove the convergence
of a new algorithm introduced in a forthcoming paper ([BRS05a]), to solve infinite dimensional stochastic
optimization problems in practice. In section 4, we propose a perturbed gradient algorithm to solve
general saddle point problems, and provide a convergence proof.

2. Auxiliary lemmas We here provide two technical lemmas we will use in the following conver-
gence proofs of Theorems 3.1 and 4.1. These two lemmas were introduced in [Coh84].

Lemma 2.1 Let (µk) be a sequence of nonnegative real numbers. Let (αk) and (βk) be sequences of
nonnegative real numbers such that

∑

k∈N
αk < +∞ and

∑

k∈N
βk < +∞. If we have:

∀k ∈ N, µk+1 − µk ≤ αkµk + βk,
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then the sequence (µk)k∈N is bounded.

Proof. The proof is classical and can be found, e.g., in [Coh84]. 2

Lemma 2.2 Let (Ω,F , P) be some probability space, equipped with a filtration (Fk). Let J be a mapping
from an Hilbert space H to the real line R. Let (uk) be a sequence of random variables with values in H,
such that for all k ∈ N, uk is Fk-measurable, and (γk) a sequence of nonnegative real numbers such that:

(i)
∑

k∈N
γk = +∞,

(ii) ∃µ ∈ R,
∑

k∈N
γk (J(uk) − µ) < +∞, and ∀k ∈ N, J(uk) − µ ≥ 0, a.s.

(iii) ∃δ > 0, ∀k ∈ N, J(uk) − E (J(uk+1)|Fk) ≤ δγk, a.s.

Then (J(uk)) a.s. converges to µ.

Proof. For all α ∈ R, let us define the subset Nα of N such that:

Nα := {k ∈ N : J(uk) − µ ≤ α, a.s.} .

We will also denote by N c
α the complementary set of Nα in N. Assumptions (i− ii) imply that Nα is not

finite.
Following (ii), we have:

+∞ >
∑

k∈N

γk (J(uk) − µ) ≥
∑

k∈Nc
α

γk (J(uk) − µ) ≥ α
∑

k∈Nc
α

γk.

It proves that for all β > 0, there is some nβ ∈ N such that
∑

k∈Nc
α, k≥nβ

γl ≤ β.

Let ε > 0. Take α = ε/2 and β = ε/(2δ). For all k ≥ nβ , we have two possibilities:

• If k ∈ Nα, then J(uk) − µ ≤ α < ε.

• If k ∈ N c
α, let m be the smallest element of Nα such that m ≥ k (we know that it exists since

Nα is not finite). We can hence write:

J(uk) − µ =J(uk) − E (J(um)|Fk) + E (J(um)|Fk) − µ

=E

(
m−1∑

l=k

J(ul) − E (J(ul+1)|Fl)

∣
∣
∣
∣
∣
Fk

)

+ E (J(um)|Fk) − µ,

≤δ

(
m−1∑

l=k

γl

)

+ α ≤ δ




∑

l∈Nc
α, l≥nβ

γl



 + α ≤ ε,

and it concludes the proof. 2

We end by a lemma on quasi-Féjer sequences introduced in the finite dimensional setting in [Erm66].
It can be seen as a probabilistic version of a result proposed by [AIS98].

Lemma 2.3 Let H be an Hilbert space, and V a nonempty subset of H. Let (xk) be a sequence of random
variable with values in H. Define for all k ∈ N, Fk = σ(xl, l ≤ k) the sigma fields generated by the
sequence. Assume that

∀x∗ ∈ V, ∃(δk) ⊂ R
+,

∑

k∈N

δk < +∞, ∃k̃ ∈ N, ∀k ≥ k̃, E
(
‖xk+1 − x∗‖2|Fk

)
≤ ‖xk−x∗‖2+δk, almost surely.

Then, it holds that

(i) (xk) is a.s. bounded,

(ii) (‖xk − x∗‖2) converges a.s. for all x∗ ∈ V ,

(iii) if all weak accumulation points of (xk) belong a.s. to V , then (xk) is a.s. weakly convergent, i.e., it
has a.s. a unique accumulation point.

Proof. The presence of conditional expectations does not modify the proof of [AIS98], Definition 1
and Proposition 1. It just forces the inequalities to be valid only almost surely. 2
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3. Minimization Problems

3.1 Algorithm We focus on the problem:

min
x∈X

f(x) (1)

s.t. x ∈ Xf .

where:

• X is some Hilbert space with inner product and norm respectively denoted by 〈·, ·〉 and ‖ · ‖,

• f : X → R is a convex mapping,

• Xf is a closed convex subset of X (we will distinguish the case where Xf is a closed subspace),
and ΠXf denotes the projection onto Xf .

We write the following perturbed subgradient algorithm for problem (1), i.e.,

Algorithm 3.1 Step 0: let x0 ∈ Xf .
Step t + 1 ∈ N:

xt+1 = ΠXf (xt + γt(st + wt)) ,

where −st typically belongs to the convex subdifferential of f at point xt (what will be called in the
following a descent direction), wt is a random noise (the perturbation), and γt is a nonnegative deter-
ministic decreasing stepsize. More precisely, (wt) is a sequence of random variables on some probability
space (Ω,A, P) with values in X, such that (xt) becomes itself a sequence of random variables with values
in X. Hence, the convergence of Algorithm 3.1 can only be stated in a probabilistic sense, and it will be
given here in terms of almost sure convergence. Associated with that algorithm, we can define a filtration
(Ft) on (Ω,A, P) by letting:

∀t ∈ N, Ft := σ(x0, . . . , xt).

3.2 Convergence Proof

Definition 3.1 (Coercivity) A mapping h : X → R is said to be coercive if and only if

lim
‖x‖→∞

h(x) = +∞.

We provide a convergence proof for Algorithm 3.1 in two main cases corresponding to two different
constraints, namely Xf being a closed vector subspace of X and Xf being a closed convex subset of X
(and not a subspace).

Theorem 3.1 (i) Assume that f is convex and coercive. Then ∂f(x) 6= ∅ for all x ∈ Xf which is either
a closed convex subset or a closed vector subspace of X.
(ii) Assume that for all t ∈ N, st is Ft-measurable.
(iii) Assume that f has linearly bounded subgradients, i.e.,

∃a1, a2 ≥ 0, ∀x ∈ Xf , ∀v ∈ ∂f(x), ‖v‖ ≤ a1‖x‖ + a2. (2)

(iv) Assume that there exists κ > 0, such that for all t ∈ N,

−
1

κ
st ∈ ∂f(xt) (3)

(v) Assume that there are b ≥ 0, A > 0 and two deterministic nonnegative sequences (εt) and (ηt) such
that for all t ∈ N there exists vt ∈ ∂f(xt) such that,

‖E (wt|Ft) ‖ ≤bηt (1 + ‖vt‖) , (4a)

E
(
‖wt‖

2|Ft

)
≤A

(

1 +
1

εt
‖vt‖

2

)

. (4b)
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If Xf is a closed convex set but not a subspace, then assume also that there exist a bounded mapping
g : R → R, and for all t ∈ N some vt ∈ ∂f(xt) such that,

E (‖wt‖|Ft) ≤ g(‖vt‖). (4c)

(vi) Assume that the sequences (γt), (εt) and (ηt) are such that:

∀t ∈ N, γt, εt > 0,
∑

t∈N

γt = +∞,
∑

t∈N

(γt)
2 < +∞,

∑

t∈N

(γt)
2

εt
< +∞,

∑

t∈N

bγtηt < +∞. (5)

Then the problem (1) has solutions, and denoting its solution set by S and its optimal value by fS,
f(xt) → fS almost surely, as t goes to infinity, and (xt) almost surely weakly converges to a point of S.
(vii) If moreover f is strongly convex (with modulus B > 0), then S = {x∗} and (xt) strongly converges
almost surely to x∗.

Proof. We use the scheme introduced by [CC90], using a Lyapunov function. Let x∗ ∈ S, and
let, for all x ∈ X, Λ(x) := 1

2‖x − x∗‖2 be our Lyapunov function. We will study its evolution over the
iterations. For all t ∈ N, we will denote Λt = Λ(xt). Let t ∈ N.

Λt+1 − Λt =
1

2
‖xt+1 − xt‖

2 + 〈xt+1 − xt, xt − x∗〉. (6)

By definition of xt+1 (see Algorithm 3.1) and nonexpansiveness of the projection, it comes

Λt+1 =
1

2
‖ΠXf (xt + γt(st + wt)) − ΠXf (x∗) ‖2 ≤

1

2
‖xt + γt(st + wt) − x∗‖2. (7)

Using Pythagore’s inequality, one gets therefore

Λt+1 − Λt ≤
(γt)

2

2
‖st + wt‖

2 + γt〈st + wt, xt − x∗〉. (8)

Note that assumption (3) and convexity of f imply that

〈st, xt − x∗〉 ≤ κ (f(x∗) − f(xt)) .

We take now the conditional expectation with respect to Ft in (8)

E (Λt+1|Ft) − Λt ≤
(γt)

2

2
E

(
‖st + wt‖

2|Ft

)
+ γt〈st, xt − x∗〉

+ γt〈E (wt|Ft) , xt − x∗〉,

≤
(γt)

2

2
E

(
‖st + wt‖

2|Ft

)
+ γtκ (f(x∗) − f(xt))

+ bηtγt‖xt − x∗‖ (1 + ‖vt‖) , by assumptions (3),(4a)

≤
(γt)

2

2
E

(
‖st + wt‖

2|Ft

)
+ γtκ (f(x∗) − f(xt))

+ bηtγt‖xt − x∗‖ (1 + a1‖xt − x∗‖ + a1‖x
∗‖ + a2) , by assumption (2) (9)

We now use on the norms the classical scalar inequality for a ∈ R, a ≤ 1 + a2, and we get from (9)

E (Λt+1|Ft) − Λt ≤
(γt)

2

2
E

(
‖st + wt‖

2|Ft

)
+ γtκ (f(x∗) − f(xt))

+ bηtγt (1 + a1 + a1‖x
∗‖ + a2) ‖xt − x∗‖2 + bηtγt (1 + a1‖x

∗‖ + a2) . (10)

We now focus on the first term of the right hand side. By the classical inequality for a, b ∈ R, (a + b)2 ≤
2(a2 + b2):

(γt)
2

2
E

(
‖st + wt‖

2|Ft

)
≤(γt)

2
(
‖st‖

2 + E
(
‖wt‖

2|Ft

))
,

≤(γt)
2κ

(
2((a2 + a1‖x

∗‖)2 + (a1)
2‖xt − x∗‖2)

)

+ (γt)
2A

(

1 +
1

εt
‖vt‖

2

)

, by assumptions (3),(2),(4b)

≤(γt)
2κ

(
2((a2 + a1‖x

∗‖)2 + (a1)
2‖xt − x∗‖2)

)

+ (γt)
2A

(

1 +
2

εt
((a2 + a1‖x

∗‖)2 + (a1)
2‖xt − x∗‖2)

)

≤

(

C1(γt)
2 + C2

(γt)
2

εt

)

‖xt − x∗‖2 +

(

C3(γt)
2 + C4

(γt)
2

εt

)

(11)
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with C1, C2, C3, C4 nonnegative deterministic scalars. We now go back to equation (10), and we obtain:

E (Λt+1|Ft) − Λt ≤ αtΛt + βt + γtκ







f(x∗) − f(xt)
︸ ︷︷ ︸

≤0, by optimality







≤ αtΛt + βt, (12)

with:

αt =2bηtγt (1 + a1 + a1‖x
∗‖ + a2) + 2C1(γt)

2 + 2C2
(γt)

2

εt
,

βt =bηtγt (1 + a1‖x
∗‖ + a2) + C3(γt)

2 + C4
(γt)

2

εt
.

Thus, (αt) and (βt) form two summable sequences (see assumption (5)). Let us take the expectation in
(12), and denote λt = E (Λt). It yields:

λt+1 − λt ≤ αtλt + βt + γtκE







f(x∗) − f(xt)
︸ ︷︷ ︸

≤0, by optimality







. (13)

Using Lemma 2.1 (see section 2), it implies that λt is bounded by, say, some M > 0. We now prove that
Λt is a convergent quasimartingale. Indeed:

• By definition, Λt is Ft measurable for all t ∈ N.

• By definition, for all t ∈ N, Λt ≥ 0, and therefore inft∈N E (Λt) ≥ 0.

• Let for all t ∈ N, Dt := {E (Λt+1 − Λt|Ft) > 0}. Define 1Dt
: Ω → {0, 1} by 1Dt

(ω) = 1 if ω ∈ Dt

and 1Dt
(ω) = 0 if ω /∈ Dt. 1Dt

is Ft-measurable. Hence, with (12), we have:
∑

t∈N

E (1Dt
· (Λt+1 − Λt)) =

∑

t∈N

E (1Dt
· E (Λt+1 − Λt|Ft)) ,

≤
∑

t∈N

E (1Dt
(αtΛt + βt)) ,

≤
∑

t∈N

(αtM + βt) < +∞.

• Since Λt ≥ 0, it is clear that supt∈N E (min(Λt, 0)) < +∞. Consequently, using the result of
[Mé82] (pp. 49-51), the sequence (Λt) is a quasimartingale and converges a.s. to some integrable
random variable. Hence, it is a.s. bounded, and hence, by definition, and using assumption (2),
the sequences (xt) and (st) are a.s. bounded in X.

We now prove that (f(xt)) a.s. converges to f(x∗). Coming back to (13), we obtain:

κγtE (f(xt) − f(x∗)) ≤ αtλt + βt + λt − λt+1.

We sum this inequality for t = 0, . . . , n:

κ

n∑

t=0

γtE (f(xt) − f(x∗)) ≤λ0 − λn+1 +

n∑

t=0

(αtM + βt),

≤M + M
n∑

t=0

αt +
n∑

t=0

βt. (14)

We make n → ∞:
∑

t∈N

γtE (f(xt) − f(x∗)) < +∞.

By optimality, all the terms under the expectation are a.s. nonnegative. Thus, almost surely:
∑

t∈N

γt (f(xt) − f(x∗)) < +∞. (15)
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We now want to use Lemma 2.2. Let t ∈ N. By convexity of f , since − 1
κst ∈ ∂f(xt),

f(xt) − f(xt+1) ≤
−1

κ
〈st, xt − xt+1〉,

=
−1

κ
〈st, xt − ΠXf

(xt + γt(st + wt))〉. (16)

Again, we distinguish between two cases:

• If Xf is a closed vector subspace of X, the projection mapping is self-adjoint and linear and
hence, (16) reads:

f(xt) − f(xt+1) ≤
γt

κ
〈ΠXf (st) , st + wt〉.

By taking the conditional expectation with respect to Ft, one gets

f(xt) − E (f(xt+1)|Ft) ≤
γt

κ
〈ΠXf (st) , st + E (wt|Ft)〉,

since the other random variables are all Ft-measurable. Since (st) and (xt) are a.s. bounded on
X, one obtains with assumptions (2),(4a) that there is some δ > 0 such that:

f(xt) − E (f(xt+1)|Ft) ≤ γtδ. (17)

• If Xf is a closed convex subset of X, (16) reads

f(xt) − f(xt+1) ≤
γt

κ
‖st‖ × ‖st + wt‖,

by using the nonexpansiveness of the projection and Cauchy-Schwartz inequality. By taking now
the conditional expectation with respect to Ft, and using assumption (4c), since (st) and (xt)
are a.s. bounded, there exists some deterministic constant δ > 0 such that

f(xt) − E (f(xt+1)|Ft) ≤ γtδ. (18)

Hence, we can in any case apply Lemma 2.2, with (15) and (17) or (18), which yields

lim
t→∞

f(xt) = f(x∗) almost surely. (19)

Let x̄ be a cluster point of (xt). Hence there is some subsequence (xφ(t)) which weakly converges to x̄.
Since Xf is convex and closed, x̄ ∈ Xf , and by lower semicontinuity of f , it holds:

f(x̄) ≤ lim inf
t→∞

f(xφ(t)) = f(x∗),

hence, x̄ ∈ S, i.e., every weak accumulation point of (xt) belongs to S.
Moreover, by boundedness of (xt) and inequality (12), it holds that

∀x∗ ∈ S, E
(
‖xt+1 − x∗‖2|Ft

)
≤ ‖xt − x∗‖2 + βt + αt max

s∈N

‖xt − x∗‖2

︸ ︷︷ ︸

δt

a.s. (20)

with (δt) a summable sequence. Lemma 2.3 and the result on accumulation points of (xt) provides that
almost surely, (xt) weakly converges.
Suppose now that f is strongly convex with modulus B > 0. In this case, S reduces to a singleton {x∗}.
By definition, one has

f(xt) − f(x∗) ≥ 〈v∗, xt − x∗〉 +
B

2
‖x∗ − xt‖

2, (21)

for all v∗ ∈ ∂f(x∗). The unique solution {x∗} is moreover characterized by the optimality condition :

∃v∗ ∈ ∂f(x∗), ∀x ∈ Xf , 〈v∗, x − x∗〉 ≥ 0.

Applying (21) to the subgradient corresponding to the previous variational inequality gives therefore

f(xt) − f(x∗) ≥
B

2
‖x∗ − xt‖

2, (22)

which shows with (19) the strong convergence of (xt) to x∗ almost surely, and completes the proof. 2
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Remark 3.1 (Strong convexity) Following the work of [BL72] we can weaken point (vii) of Theorem
3.1 related to the strong convexity assumption. Indeed, if the function f is only required to be strictly
convex, the strong convergence of (xt) towards the unique solution x∗ of problem (1) can also be proved.
For the sake of simplicity and clarity of the proof, we have here preferred to make the strong convexity
assumption.

Remark 3.2 (Random stepsizes) The stepsizes (ρt) and (εt) introduced in Theorem 3.1 can be taken
as random sequences with nonnegative values, such that for all t ∈ N, ρt and εt are Ft-measurable. Indeed,
the main result we use in the proof, namely Métivier’s Proposition on quasimartingales, is available with
(Ft) adapted sequences for the stepsizes. This remark allows possible online definition for these stepsizes,
depending on the past σ-fields.

Remark 3.3 (Boundedness of the noise) Assumption (4c) is necessary only in the case of a closed
convex constraint set. However, it is possible to relax this assumption when f is strongly convex, by using
classical arguments directly on the Lyapunov function Λ introduced in the proof and invoking Robbins-
Siegmund Lemma (see [RS71]).

Remark 3.4 (Descent direction) Assumption (3) may be replaced by the following weaker ones:

∀t ∈ N, ∀x∗ ∈ S, 〈st, xt − x∗〉 ≤κ (f(x∗) − f(xt)) ,

∀t ∈ N, ∃vt ∈ ∂f(xt), ‖st‖ ≤c (1 + ‖vt‖) .

However, for the simplicity of the statement, we preferred to directly assume that −st/κ ∈ ∂f(xt), which,
together with (2), implies those equations.

Remark 3.5 (Kiefer-Wolfowitz) Another stochastic approximation algorithm suitable for differen-
tiable and finite-dimensional problems and referred to as Kiefer-Wolfowitz algorithm (see [KW52]) com-
putes an approximation of the true gradient, on the basis of finite differences. There are in this algorithm
two stepsizes, the one corresponding to the descent step γt, and the other corresponding to the finite
difference approximation. These two steps are required to satisfy joint decreasing assumptions, which are
exactly the same as (5), if you consider the finite difference stepsize to correspond to (ηt)

2, when m = 1.

Remark 3.6 (Convex subset and linear subspaces) We distinguish in the assumptions the cases
where Xf is a general convex subset of the Hilbert space X, and the cases where it has moreover a
linear subspace structure. Since the linear subspaces are convex, this distinction may seem unnecessary.
However, the assumptions on the perturbations (wt) may be weakened in the subspace case, due to the
special properties of the projection mapping on a linear subspace. It is the reason why the two cases are
separated in the convergence theorem.

3.3 Comparison with existing results Among most of literature concerning stochastic approxi-
mation algorithms, beginning with [RM51], it is hard to find a result really appropriate to a comparison
with our result. The contributions of Ermoliev in this field (e.g., [Erm66, Erm66], or [Erm76]) are
the closest from ours in the spirit: they aim at solving convex constrained optimization problems by
variational techniques, but remain in a finite dimensional setting. The results of [Ré73a, Ré73b] and
[CW02] are close to ours, but the algorithms do not present the same abilities, especially concerning
general projections. A comparison with those results would not be sensible.

On the contrary, the results in the infinite dimensional setting for deterministic projected subgradients
algorithms are easier to compare with our result. We can especially cite the work [AIS98]. It provides a
convergence theorem for projected ε-subgradient algorithms. This theorem relies on convexity assumption
and local boundedness assumptions for the subdifferential. Our result may be seen as a perturbed or
stochastic version of this result, where our assumption (2) plays the role (in a more restricted way)
of the local boundedness of the subdifferential. Assumptions on the decreasing stepsize sequences are
essentially the same. Moreover, if we replace in the theorem 3.1 the subgradients where they appear
in the assumptions by νt-subgradients, with (νt) another decreasing sequence, we could prove the same
convergence result.
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3.4 Application to closed loop problems We here assume that X = L2(Rm, Rp, P), and that
there is some random variable denoted by ξξξ and a convex, lower semicontinuous and differentiable in its
first component mapping j : R

p × R
m → R such that:

∀x ∈ L2(Rm, Rp, P), f(x) = E (j(x(ξξξ), ξξξ)) .

Let Xf be a closed convex subset of X. We hence focus on the problem :

min
x∈Xf

E (j(x(ξξξ), ξξξ)) . (23)

Notice that since j is convex, then so is f , and hence, f and j are differentiable, and it holds:

∀x ∈ X, ∇f(x)(·) = ∇xj(x(·), ·).

Such problems are often referred to as closed loop stochastic optimization problems. A recent work
[BRS05a] focused on this problem, and proposed a stochastic gradient type algorithm to solve this prob-
lem, based on the use of kernels, i.e., mappings Kt : R

m × R
m → R. Their algorithm is the following:

Algorithm 3.2 Step t:

• Draw ξξξt+1 identically, independently from the past drawings,

• Update:
xt+1(·) = ΠXf (xt(·) − ρt∇xj(xt(ξξξt+1), ξξξt+1)Kt(ξξξt+1, ·)) ,

They provide a convergence proof for this algorithm. We claim here that this algorithm (whose abilities
and applications are developed in [BRS05a]) is a special case of Algorithm 3.1. Indeed, let us define:

• Ft := σ(x0, . . . , xt) = σ(ξξξ1, . . . , ξξξt)

• st := −∇xj(xt(·), ·),

• wt := ∇xj(xt(·), ·) −∇xj(xt(ξξξt+1), ξξξt+1)
1
εt

Kt(ξξξt+1, ·).

Then, Algorithm 3.2 can be rewritten as:

xt+1 = ΠXf (xt + ρtεt(st + wt)) ,

which corresponds exactly to Algorithm 3.1 with γt = ρtεt, and ηt = (εt)
1/m to satisfy the noise assump-

tions.

Clearly, assumptions on convexity of f and (3) are satisfied with our choice of st. We have also to
assume that j(·, ξ) has uniformly (in ξ) linearly bounded gradients. We now focus on assumptions (4a)–
(4b)–(4c) and (5).
In [BRS05a], the kernel functions are assumed to be such that:

∀t ∈ N, ‖st − E

(

st(ξξξ)
1

εt
Kt(ξξξ, ·)

)

‖ ≤b1ηt (1 + ‖st‖) ,

∀x ∈ R
m, E

(
(Kt(x,ξξξ))2

)
≤b2εt, (24)

with two deterministic positive scalars b1 and b2. The stepsizes are assumed to decrease to 0 and to
satisfy:

εt, ρt > 0,
∑

t∈N

εtρt = +∞,
∑

t∈N

ρtεtηt < +∞,
∑

t∈N

(ρt)
2εt < +∞. (25)

Clearly, (24) and (25) ensure that assumptions (4a)–(4b)–(4c) and (5) of Theorem 3.1 are satisfied.
Hence, Algorithm 3.2 converges.

An interesting application of Algorithm 3.2 appears when Xf is the intersection of a closed convex set
Xc and a linear subspace Xv stable under projection on Xc. Indeed, thanks to the Proposition 3.1, one
can rewrite the algorithm as follows:

xt+1(·) = ΠXc
{xt(·) − ρtΠXv

(∇xj(xt(ξξξt+1), ξξξt+1)Kt(ξξξt+1, ·))} .

To sum up, if the projection on the convex set is easy to compute, a preprocessing of the kernels Kt

may help to compute the projection on the linear subspace. The following proposition on projections is
known, and its proof simply relies on the very definition of a projection on a convex set.
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Proposition 3.1 (Projection on an intersection) Let Xf = Xv ∩ Xc, with Xv a closed vector
subspace of X and Xc a closed convex subset of X. Assume that Xf is not empty, and that ΠXc

(Xv) ⊂ Xv.
Then it holds:

ΠXv∩Xc
= ΠXc

◦ ΠXv
.

Proof. One uses the variational inequality characterizing the projection, namely:

∀x ∈ X, ∀y ∈ Xv ∩ Xc, 〈x − ΠXv∩Xc
(x), y − ΠXv∩Xc

(x)〉 ≤ 0.

Let x ∈ X, and y ∈ Xv ∩ Xc. Then, one has

〈x − ΠXc
(ΠXv

(x)) , y − ΠXc
(ΠXv

(x))〉 =〈ΠXv
(x) − ΠXc

(ΠXv
(x)) , y − ΠXc

(ΠXv
(x))〉

+ 〈x − ΠXv
(x), y − ΠXc

(ΠXv
(x))〉

The first term of the right hand-side is negative by characterization of the projection on Xc of ΠXv
(x).

On the other hand, one has by assumption that ΠXc
(ΠXv

(x)) ∈ Xv, and hence

〈x − ΠXv
(x), y − ΠXc

(ΠXv
(x))〉 = 〈ΠXv

(x − ΠXv
(x)) , y − ΠXc

(ΠXv
(x))〉 = 0,

since ΠXv
is linear and self-adjoint. It concludes the proof. 2

4. Saddle Point Problems

4.1 Algorithm We focus here on the problem:

min
x∈X

max
p∈P

L(x, p), (26)

s.t. x ∈ Xf , p ∈ P f ,

where

• X and P are two Hilbert spaces with respective inner product and norm denoted by 〈·, ·〉X , 〈·, ·〉P
and ‖ · ‖X , ‖ · ‖P ,

• L : X × P → R is a convex-concave mapping,

• Xf , P f are either closed convex subsets or closed subspaces of X and P respectively, and Π·(·)
will denote the projection.

We write the following perturbed subgradient algorithm for problem (26):

Algorithm 4.1 Step t ∈ N:

xt+1 =ΠXf (xt + γx
t (st + wt)) ,

pt+1 =ΠP f (pt + γp
t (rt + vt)) .

st is hence as before a descent direction, while rt is an ascent direction, and wt, vt are the perturbations.
The nonnegative stepsizes γx

t , γp
t will be in the following the same.

4.2 Convergence Proof We have the following theorem:

Theorem 4.1 (Saddle Point Problems) (i) Assume that L(·, p) : X → R is convex for all p ∈ P ,
and that L(x, ·) : P → R is concave for all x ∈ X. Assume moreover that Xf and P f are closed convex
subsets of X and P , and that there exists a saddle point (x∗, p∗) to L over Xf × P f .
(ii) Let (Ft) be a filtration, and assume that for all t ∈ N, xt, st, pt and rt are Ft-measurable.
(iii) Assume that for all (x, p) ∈ Xf × P f , ∂xL(x, p) and ∂pL(x, p) are not empty, and that there exist
a1, a2 > 0 such that

∀(x, p) ∈ Xf × P f , ∀ux ∈ ∂xL(x, p), ‖ux‖X ≤a1‖x‖X + a2, (27a)

∀(x, p) ∈ Xf × P f , ∀up ∈ ∂pL(x, p), ‖up‖P ≤a1‖p‖P + a2, (27b)
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(iv) Assume that there exist c, κ > 0 such that for all t ∈ N,

〈st, xt − x∗〉X ≤κ (L(x∗, pt) − L(xt, pt)) , (28a)

〈rt, pt − p∗〉P ≤κ (L(xt, pt) − L(xt, p
∗)) , (28b)

∃ux
t ∈ ∂xL(xt, pt), ‖st‖X ≤c (1 + ‖ux

t ‖) , (28c)

∃up
t ∈ ∂pL(xt, pt), ‖rt‖P ≤c (1 + ‖up

t ‖) . (28d)

(v) Assume that there are bx, bp ≥ 0, A > 0 and nonnegative sequences (εx
t , ηx

t ) and (εp
t , η

p
t ) such that for

all t ∈ N, there exist (ux
t , up

t ) ∈ ∂xL(xt, pt) × ∂pL(xt, pt) and it holds

‖E (wt|Ft) ‖X ≤bxηx
t (1 + ‖ux

t ‖X) , (29a)

‖E (vt|Ft) ‖P ≤bpη
p
t (1 + ‖up

t ‖P ) , (29b)

E
(
‖wt‖

2
X |Ft

)
≤A

(

1 +
1

εx
t

‖ux
t ‖

2
X

)

, (29c)

E
(
‖vt‖

2
P |Ft

)
≤A

(

1 +
1

εp
t

‖up
t ‖

2
P

)

. (29d)

If Xf (resp. P f ) is a closed convex subset and not a subspace, assume also that there exist a bounded
mapping gx : R → R (resp. gt), and for all t ∈ N some ux

t ∈ ∂xL(xt, pt) (resp. up
t ∈ ∂pL(xt, pt)) such

that,
E (‖wt‖X |Ft) ≤ gx(‖ux

t ‖X), (resp. E (‖vt‖P |Ft) ≤ gp(‖u
p
t ‖P )). (29e)

(vi) Assume that the sequences (γt), (εt
x), (εp

t ), (ηx
t ) and (ηp

t ) are all strictly nonnegative and verify:

∑

t∈N

γt = +∞,
∑

t∈N

(γt)
2 < +∞,

∑

t∈N

bxγtη
x
t < +∞,

∑

t∈N

bpγtη
p
t < +∞,

∑

t∈N

(γt)
2

εx
t

< +∞,
∑

t∈N

(γt)
2

εp
t

< +∞.

(30a)

Then, (xt) and (pt) are a.s. bounded, and almost surely, L(xt, p
∗) → L(x∗, p∗), and L(x∗, pt) → L(x∗, p∗)

as t goes to infinity. Moreover, if L(·, p∗) is strongly convex, (xt) strongly converges almost surely to x∗.

Proof. We follow the same scheme as in the proof of Theorem 3.1. The proof may therefore seem
routine, but it is necessary to write it because of the interaction between the iterates xt and pt, given by
assumptions (28a)–(28b).
Let us define for all t ∈ N, Λt our Lyapunov function to be:

Λt = ‖xt − x∗‖2
X + ‖pt − p∗‖2

P .

Using the same calculations as those leading to (8), we obtain in any case:

Λt+1 ≤Λt + (γt)
2
(
‖st + wt‖

2
X + ‖rt + vt‖

2
P

)

+ 2γt (〈st + wt, xt − x∗〉X + 〈rt + vt, pt − p∗〉P ) . (31)

With the classical scalar inequality (a + b)2 ≤ 2(a2 + b2), and by assumptions (28a)–(28b), we get from
(31):

Λt+1 ≤Λt + 2(γt)
2
(
‖st‖

2
X + ‖wt‖

2
X

)

+ 2(γt)
2
(
‖rt‖

2
P + ‖vt‖

2
P

)

+ 2γtκ (L(x∗, pt) − L(xt, pt) + L(xt, pt) − L(xt, p
∗))

+ 2γt (〈wt, xt − x∗〉X + 〈vt, pt − p∗〉P ) . (32)

Moreover, by assumptions (28c)–(28d), we get:

‖st‖
2
X ≤2c2

(
1 + ‖ux

t ‖
2
X

)
,

‖rt‖
2
P ≤2c2

(
1 + ‖up

t ‖
2
P

)
.

Using assumption (27) one hence obtains:

‖st‖
2
X ≤2c2

(
1 + 2(a1)

2‖xt − x∗‖2
X + 2(a2 + a1‖x

∗‖X)2
)
,

‖st‖
2
X ≤2c2

(
1 + 2(a1)

2‖pt − p∗‖2
P + 2(a2 + a1‖p

∗‖P )2
)
.
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Finally, define a3 = 4c2(a1)
2 and ax

4 = 2c2
(
1 + 2(a2 + a1‖x

∗‖X)2
)

and analogously for ap
4, and we obtain

‖st‖
2
X ≤a3‖xt − x∗‖2

X + ax
4 , (33a)

‖st‖
2
X ≤a3‖pt − p∗‖2

P + ap
4. (33b)

Similarly, assumptions (27) and (29c)–(29d) read

E
(
‖wt‖

2
X |Ft

)
≤A

(

1 +
2

εx
t

(
(a1)

2‖xt − x∗‖2
X + (a2 + a1‖x

∗‖X)2
)
)

(34a)

E
(
‖vt‖

2
P |Ft

)
≤A

(

1 +
2

εp
t

(
(a1)

2‖pt − p∗‖2
P + (a2 + a1‖p

∗‖P )2
)
)

(34b)

We now take the conditional expectation with respect to Ft in (32), and apply inequalities (33)–(34). It
yields,

E (Λt+1|Ft) ≤Λt + 2(γt)
2
(
a3‖xt − x∗‖2

X + ax
4 + a3‖pt − p∗‖2

P + ap
4

)

+ 2(γt)
2

(

A

(

1 +
2

εx
t

(
(a1)

2‖xt − x∗‖2
X + (a2 + a1‖x

∗‖X)2
)
))

+ 2(γt)
2

(

A

(

1 +
2

εp
t

(
(a1)

2‖pt − p∗‖2
P + (a2 + a1‖p

∗‖P )2
)
))

+ 2γtκ (L(x∗, pt) − L(xt, pt) + L(xt, pt) − L(xt, p
∗))

+ 2γt (‖E (wt|Ft) ‖ × ‖xt − x∗‖X + ‖E (vt|Ft) ‖ × ‖pt − p∗‖P ) (35)

Assumptions (29a)–(29b) provide bounds for the last summands of (35), and we finally obtain

E (Λt+1|Ft) ≤Λt + 2(γt)
2
(
a3‖xt − x∗‖2

X + ax
4 + a3‖pt − p∗‖2

P + ap
4

)

+ 2(γt)
2

(

A

(

1 +
2

εx
t

(
(a1)

2‖xt − x∗‖2
X + (a2 + a1‖x

∗‖X)2
)
))

+ 2(γt)
2

(

A

(

1 +
2

εp
t

(
(a1)

2‖pt − p∗‖2
P + (a2 + a1‖p

∗‖P )2
)
))

+ 2γtκ (L(x∗, pt) − L(xt, pt) + L(xt, pt) − L(xt, p
∗))

+ 2bxηx
t γt (a1‖xt − x∗‖X + a2 + a1‖x

∗‖X) ‖xt − x∗‖X

+ 2bpη
p
t γt (a1‖pt − p∗‖P + a2 + a1‖p

∗‖P ) ‖pt − p∗‖P

(36)

Moreover, the following classical scalar inequality holds: ab ≤ a2+b2

2 . Hence, (36) reads:

E (Λt+1|Ft) ≤Λt + βt + αt

(
‖xt − x∗‖2

X + ‖pt − p∗‖2
P

)
+ 2γtκ (L(x∗, pt) − L(xt, p

∗)) ,

≤Λt (1 + αt) + βt + 2γtκ (L(x∗, pt) − L(xt, p
∗)) , (37)

with (αt) and (βt) two summable sequences defined in the same way as in the Proof of Theorem 3.1.
Using the saddle point assumption in (x∗, p∗), one get with (37):

E (Λt+1|Ft) ≤Λt (1 + αt) + βt + 2γtκ (L(x∗, p∗) − L(xt, p
∗)) and, (38a)

E (Λt+1|Ft) ≤Λt (1 + αt) + βt + 2γtκ (L(x∗, pt) − L(x∗, p∗)) . (38b)

Moreover, it is also clear by the saddle point assumption that:

L(x∗, pt) − L(x∗, p∗) ≤ 0, and, L(x∗, p∗) − L(xt, p
∗) ≤ 0.

At this point, using the same quasimartingale arguments as before, we get that the sequence (Λt) is a
quasimartingale and converges a.s. to some integrable random variable. Hence, it is a.s. bounded and
hence, (xt) and (pt) are a.s. bounded in X and P respectively. Using assumptions (27),(28), (st) and
(rt) are also a.s. bounded.
Moreover, by making the same calculations as those leading to (15), we obtain:

∑

t∈N

γt (L(xt, p
∗) − L(x∗, p∗)) < + ∞, (39a)

∑

t∈N

γt (L(x∗, p∗) − L(x∗, pt)) < + ∞. (39b)
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By convexity of L(·, p∗) and concavity of L(x∗, ·), we make the same calculations as in (16)–(17), which
are still valid by the boundedness of the sequences and the assumptions of the theorem, and finally get
by Lemma 2.2:

lim
t→∞

L(xt, p
∗) =L(x∗, p∗) almost surely, and (40a)

lim
t→∞

L(x∗, pt) =L(x∗, p∗) almost surely. (40b)

Lower semicontinuity of L(·, p∗) and upper semicontinuity of L(x∗, ·) yield the weak convergence of (xt, pt)
to (x∗, p∗) in the closed convex case.
Finally, if L(·, p∗) is strongly convex, by the same equation as (22), we obtain that (xt) strongly converges
to x∗. 2

5. Conclusions We proposed here a general framework for the convergence analysis of Hilbert-
valued perturbed subgradient algorithms. We proved the convergence of such schemes under convexity
and subdifferentiability assumptions on the cost function. The perturbations of the subgradients were
only required to be asymptotically martingale increments instead of being so all along the iterations.
Furthermore, we allowed projections at each iteration on the feasible set which could be either a closed
convex subset or a closed vector subspace of the Hilbert space.
We then extended this framework to the solution of saddle-point problems, and proved the convergence
of perturbed Arrow-Hurwicz type subgradient algorithms.
Solving stochastic optimization problems with measurability constraints is a natural use of our infinite
dimensional stochastic approximation scheme. In this case, the projection on the measurable functions
may be done directly in the subgradient perturbation (under, e.g., a mollifying kernel applied to the
subgradient mapping), making the algorithm easily implementable.

Acknowledgments. We thank P. Carpentier, G. Cohen, M. Minoux and T. Pennanen for useful
discussions and comments on an earlier version of this paper. We also thank three anonymous referees
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