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Abstract

We focus on solving closed-loop stochastic problems, and propose a perturbed

gradient algorithm to achieve this goal. The main hurdle in such problems is

the fact that the control variables are infinite dimensional, and have hence to

be represented in a finite way in order to solve the problem numerically. In the

same way, the gradient of the criterion is itself an infinite dimensional object.

Our algorithm replaces this exact (and unknown) gradient by a perturbed one,

which consists in the product of the true gradient evaluated at a random point

and a kernel function which extends this gradient to the neighbourhood of

the random point. Proceeding this way, we explore the whole space iteration

after iteration through random points. Since each kernel function is perfectly

known by a finite (and small) number of parameters, say N , the control at

iteration k is perfectly known as an infinite dimensional object by at most

N × k parameters.

The main strength of this method is that it avoids any discretization of the
underlying space, provided that we can draw as many points as needed in this
space. Hence, we can take into account the possible measurability constraints

of the problem in a new way.
Moreover, the randomized strategy implemented by the algorithm causes the

most probable parts of the space to be the most explored ones, which is a
priori an interesting feature.
In this paper, we first show a convergence result of this algorithm in the
general case, and then give a few numerical examples showing the interest of
this method for solving practical stochastic optimization problems.

Keywords: Stochastic Quasi-Gradient, Perturbed Gradient, Closed-Loop
Problems

1. Motivation

The aim of this work is to focus on the way we can use a gradient algorithm for
stochastic optimal control problems with closed-loop control variables. The typical
problem we will consider is:

min
u

J (u) := E (j(u(ξ), ξ)) ,

s.t. u ∈ Uf ,

with ξ some random variable with values in a space Ξ called the noise space of the
problem. The control variable u is searched as a mapping from Ξ to a metric space
U , such that j(u(·), ·) : Ξ → R is measurable. The possible restrictions on the feed-
back u we are looking for are given by the feasible subset denoted by U f . Usually,
u belongs therefore to an infinite dimensional space. The numerical problem is to
find a finite representation of the control variable u.
A classical technique consists in discretizing the space Ξ. By giving to the underly-
ing random variable ξ a discrete probability law, or by quantizing the noise space
into a partition, one finds the optimal control for each discretized value of ξ. In
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the case of multi-stage stochastic programs, this approach corresponds for exam-
ple to the representation of the underlying noise space by some scenario trees (see
e.g.,[Shapiro and Ruszczynski, 2003] for a good survey of usual stochastic program-
ming techniques, or [Higle and Sen, 1996] for a description of the various possible
algorithms for large-scale problems). As soon as the problem becomes a discrete
one, every finite dimensional optimization algorithms can be used without difficul-
ties except computational ones. For example, discretized problem can be solved
by as many gradient algorithms as points of discretization for ξ. Each algorithm
is correctly described, and its convergence is well known. But, at the end of these
discrete resolutions, one has to build the continuous control by some e.g., interpo-
lation step, on the basis of the computed discrete optimal values.
Another possibility is to search for the control u as a linear combination of known
functions (see [Holt et al., 1955] or more recently [Bertsekas and Tsitsiklis, 1996]).
One has hence to solve a finite dimensional problem, of dimension equal to the car-
dinality of the function basis. In this approach, one is restrained from the beginning
to the vector space generated by the given basis, but one avoids any interpolation
step.
Our approach is different from the preceding ones. It avoids any interpolation
step, and it is not restrained to any a priori subspace of the initial feasible set.
Our approach is based on the ideas of stochastic approximations introduced by
Robbins and Monro (see [Robbins and Monro, 1951], or [Lai, 2003] for an histor-
ical survey of these techniques). We apply the classical stochastic approxima-
tion techniques (see e.g., [Delyon, 1996, Borkar, 1998, Granichin, 2002]) to gra-
dient algorithms with stochastic noises,(see e.g., [Bertsekas and Tsitsiklis, 2000,
Bertsekas and Tsitsiklis, 1996]). The main idea is to draw at each iteration of
our gradient algorithm a realization of the underlying random variable ξ, and then,
to extend the gradient of J at the draw, to a given neighbourhood whose size is
decreasing along the iterations.
Under regularity assumptions on the cost function j, and under some technical as-
sumptions on the law of ξ and on the kernels used to extend the gradient, we give
in subsections 2.2 and 2.3 two convergence proofs for this algorithm in two main
cases.
As a particular case, we show in subsection 2.4 how our algorithm generalizes the
classical stochastic gradient algorithm for open loop problems.
We then apply in section 3 this algorithm to some optimal control problems.

2. Theoretical framework

2.1. Algorithm. Let us denote the euclidean norm in R
n by ‖ · ‖n, for all n ∈ N,

and analogously by 〈·, ·〉n the usual scalar product. We here focus on the problem:

min
u

J (u) := E (j(u(ξ), ξ)) ,(1)

s.t. u ∈ Uf .

where:

• (Ω,F , P) is a probability space,
• ξ is a random variable on Ω with values in R

m, and with law µ, admitting
a density with respect to the Lebesgue measure,

• j : R
p×R

m → R is a normal integrand, i.e., j is such that for all measurable
mapping u : R

m → R
p, j(u(·), ·) : R

m → R is measurable,
• Uf is a closed convex subset, or a sub vector space of L2(Rm, Rp) := {u :

R
m → R

p : E
(

‖u(ξ)‖2
p

)

< ∞}. This space is an Hilbert space, equipped
2



with the scalar product:

〈u, v〉 = E (〈u(ξ), v(ξ)〉p) .

• ΠUf (·) denotes the projection onto U f .

We write the classical gradient algorithm for problem (1), i.e.,

(2) uk+1 = ΠUf

(

uk − ρk∇J (uk)
)

, a.s.

where (ρk) is a given sequence of nonnegative numbers. This algorithm is of course
not a practical one, mainly from a numerical point of view. Indeed, the update
formula is an equality in L2(Rm, Rp)... and the gradient of J is given by the
following formula:

(3) ∀u ∈ L2(Rm, Rp), ∇J (u)(·) = ∇uj(u(·), ·).
Stochastic approximation algorithms usually aim at estimating an expectation

on the basis of successive draws of random variables. Since the gradient is here not
an expectation, we cannot use a priori such techniques, though problem (1) is a
stochastic problem.
Depending on the feasible set U f , the stochasticity of the problem (1) is more or
less effective. Typically, if the feasible set is of the type u(ξ) ∈ Γ(ξ) a.s. for some
mapping Γ, the cost depends on the probability law of ξ, but not the optimal value
u∗ of the problem (which depends only on the support of the random variable ξ),
since we can invert the expectation and the infimization operators in problem (1).

But we might want to solve such problems with the help of the underlying random
variable ξ. It leads us to propose the following stochastic algorithm to solve problem
(1):

Algorithm 2.1. Step k:

• Draw ξk+1 independently from the past draws according to µ,
• Update:

uk+1(·) = ΠUf

(

uk(·) − ρkεk∇uj(uk(ξk+1), ξk+1)
1

εk
Kk(ξk+1, ·)

)

,

where Kk is a bounded mapping from R
m ×R

m to R, and εk > 0. In the following,
we will call the mappings Kk kernels, by analogy with the theory of functional
estimation.

Our algorithm 2.1 is hence a stochastic algorithm, but it differs from the classical
stochastic gradient algorithm, in that our noisy gradient is not an unbiased estima-
tor of the true gradient, but a biased one. Indeed, by denoting Fk = σ(ξ1, . . . , ξk)
the sigma field generated by the past draws:

E

(

∇uj(uk(ξk+1), ξk+1)
1

εk
Kk(ξk+1, ·)|Fk

)

=E

(

∇uj(uk(ξ), ξ)
1

εk
Kk(ξ, ·)

)

,

6=∇uj(uk(·), ·).
One of the main interests of this algorithm is to provide an estimate of the optimal

feedback without any interpolation step involving a lot of calculations. Typically,
the kernels are determined at each iteration by essentially two parameters: their
window size εk and their center ξk+1, as will be developped further. At iteration k,
the feedback uk+1 will be perfectly known on its possibly continuous domain by at
most 2 × (k + 1) parameters. It may therefore be an interesting alternative to the
classical one which consists in two steps: a discretization of the underlying noise
space, and an interpolation step.
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Before going to the convergence proofs, let us give some notations. For all
mapping G ∈ L2(Rm × R

m, Rm), we will write E (G(ξ, ·)) for
∫

Ω
G(ξ(ω), ·)dP(ω),

which is in L2(Rm, Rm). Furthermore, let v : R
m ×R

m → R
p, such that for almost

all ξ, v(ξ, ·) ∈ L2(Rm, Rp). It will hold in the following :

∀k ∈ N, ‖v(ξk+1, ·)‖2 =

∫

Ω

‖v(ξk+1, ξ(ω))‖2
pdP(ω), with ξ independent from ξk+1.

2.2. A first convergence proof. We use here the classical Robbins-Siegmund’s
scheme to prove our convergence result (see [Robbins and Siegmund, 1971]).

Theorem 2.2. (i) Assume that for almost all ξ ∈ R
m, u 7→ j(u, ξ) is strongly

convex with modulus B, uniformly in ξ, lower semicontinuous. Assume that j is a
normal integrand on U f which is a closed convex subset of L2(Rm, Rp). Then (1)
has a unique solution denoted by u∗.
(ii) Assume that there exist b1, b2 > 0 such that:

∀k ∈ N, rk(·) := ∇uj(uk(·), ·), ‖rk − E

(

rk(ξ)
1

εk
Kk(ξ, ·)

)

‖ ≤b1ε
k
(

1 + ‖rk‖
)

,

(4a)

∀x ∈ R
m, E

(

(Kk(x, ξ))2
)

≤b2ε
k,(4b)

with uk generated by Algorithm 2.1.
(iii) Assume that ∇uj(·, ξ) is Lipschitz continuous with modulus L uniformly in ξ.
(iv) Assume that the sequences (εk) and (ρk) are such that:

(5) εk, ρk > 0,
∑

k∈N

ρkεk = +∞,
∑

k∈N

ρk(εk)2 < +∞.

(v) Assume that

(6a) ∇J (u∗) = 0, and ∀k ∈ N, 0 < ρk <
B

2b2L2
,

or that

(6b) ∇J (u∗) 6= 0, and
∑

k∈N

εk(ρk)2 < +∞.

Then (uk) generated by Algorithm 2.1 a.s. strongly converges to the unique optimal
solution of (1), and J (uk) → J (u∗) a.s., as k goes to infinity.

Proof : We use the classical scheme of Robbins-Siegmund. For the simplicity of
notation, let us define Π to be the projection on the closed convex U f , and rk(·) =
∇uj(uk(·), ·).

‖uk+1 − u∗‖2 =‖Π
“

uk − ρkrk(ξk+1)Kk(ξk+1, ·)
”

− Π(u∗)‖2,

≤‖uk − u∗ − ρkrk(ξk+1)Kk(ξk+1, ·)‖2,

=‖uk − u∗‖2 + (ρk)2‖rk(ξk+1)‖2
pE

“

Kk(ξk+1, ξ)2|ξk+1
”

− 2ρkεk〈uk − u∗, rk(ξk+1)
1

εk
Kk(ξk+1, ·)〉.

where those inequalities were obtained thanks to the nonexpansiveness property of the
projection, and the Pythagore’s equality. We now want to use assumptions (4a)–(4b).

‖uk+1 − u∗‖2 ≤‖uk − u∗‖2 + b2ε
k(ρk)2‖rk(ξk+1)‖2

p

− 2ρkεk〈uk − u∗, rk(ξk+1)
1

εk
Kk(ξk+1, ·) − rk〉

− 2ρkεk〈uk − u∗, rk〉.(7)
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Recall that since j is strongly convex uniformly in ξ, J is also strongly convex with same
modulus, which yields

J (u∗) − J (uk)
| {z }

≤0, by optimality

+〈rk, uk − u∗〉 ≥
B

2
‖u∗ − uk‖2.

Hence, one has:

−2ρkεk〈rk, uk − u∗〉 ≤ −Bρkεk‖u∗ − uk‖2.

We go back to (7). With the last inequality, we obtain

‖uk+1 − u∗‖2 ≤
“

1 − Bρkεk
”

‖uk − u∗‖2 + b2ε
k(ρk)2‖rk(ξk+1)‖2

p

− 2ρkεk〈uk − u∗, rk(ξk+1)
1

εk
Kk(ξk+1, ·) − rk〉.(8)

Using the Lipschitz property of ∇uj, and the classical inequality (a + b)2 ≤ 2a2 + 2b2, it
holds that

‖rk(ξk+1)‖2
p ≤2‖rk(ξk+1) −∇uj(u∗(ξk+1), ξk+1)‖2

p + 2‖∇uj(u∗(ξk+1), ξk+1)‖2
p,

≤2L2‖uk(ξk+1) − u∗(ξk+1)‖2
p + 2‖∇uj(u∗(ξk+1), ξk+1)‖2

p.(9)

Gathering (8) and (9) yields

‖uk+1 − u∗‖2 ≤
“

1 − Bρkεk
”

‖uk − u∗‖2 + 2b2L
2εk(ρk)2‖uk(ξk+1) − u∗(ξk+1)‖2

p

+ 2b2ε
k(ρk)2‖∇uj(u∗(ξk+1), ξk+1)‖2

p

− 2ρkεk〈uk − u∗, rk(ξk+1)
1

εk
Kk(ξk+1, ·) − rk〉.(10)

We now take in (10) the conditional expectation with respect to Fk := σ(ξ1, . . . ξk). Since
ξk+1 is independent from Fk, it yields:

E

“

‖uk+1 − u∗‖2|Fk
”

≤
“

1 − Bρkεk + 2b2L
2εk(ρk)2

”

‖uk − u∗‖2

+ 2b2ε
k(ρk)2‖∇J (u∗)‖2

− 2ρkεk〈uk − u∗, E

„

rk(ξ)
1

εk
Kk(ξ, ·)

«

− rk〉,

≤
“

1 − Bρkεk + 2b2L
2εk(ρk)2

”

‖uk − u∗‖2

+ 2b2ε
k(ρk)2‖∇J (u∗)‖2

+ 2ρkεk‖uk − u∗‖‖E

„

rk(ξ)
1

εk
Kk(ξ, ·)

«

− rk‖,

≤
“

1 − Bρkεk + 2b2L
2εk(ρk)2

”

‖uk − u∗‖2

+ 2b2ε
k(ρk)2‖∇J (u∗)‖2

+ 2b1ρ
k(εk)2

“

1 + ‖∇J (uk)‖
”

‖uk − u∗‖.(11)

We now use the inequality a ≤ a2 + 1, and the Lipschitz property of ∇J , and we obtain

E

“

‖uk+1 − u∗‖2|Fk
”

≤
“

1 − Bρkεk + 2b2L
2εk(ρk)2 + 2b1ρ

k(εk)2(1 + L + ‖∇J (u∗)‖)
”

‖uk − u∗‖2

+ 2b1ρ
k(εk)2(1 + ‖∇J (u∗)‖) + 2b2ε

k(ρk)2‖∇J (u∗)‖2.(12)

We now distinguish between two cases:

(1) If (6a) holds, by assumption, −Bρkεk + 2b2L
2εk(ρk)2 < 0. Inequality (12) can

therefore be rewritten as:

E

“

‖uk+1 − u∗‖2|Fk
”

≤
“

1 + 2b1ρ
k(εk)2(1 + L + ‖∇J (u∗)‖)

”

‖uk − u∗‖2

+ 2b1ρ
k(εk)2(1 + ‖∇J (u∗)‖)

+
“

−Bρkεk + 2b2L
2εk(ρk)2

”

‖uk − u∗‖2.(13)
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We can then use the Robbins-Siegmund lemma (see [Robbins and Siegmund, 1971]),
which shows that (uk) converges a.s. strongly to u∗.

(2) If (6b) holds, inequality (12) can be rewritten as:

E

“

‖uk+1 − u∗‖2|Fk
”

≤
“

1 + 2b2L
2εk(ρk)2 + 2b1ρ

k(εk)2(1 + L + ‖∇J (u∗)‖)
”

‖uk − u∗‖2

+ 2b1ρ
k(εk)2(1 + ‖∇J (u∗)‖) + 2b2ε

k(ρk)2‖∇J (u∗)‖2

− Bρkεk‖uk − u∗‖2,(14)

and with our assumptions on the sequences, we can also apply the Robbins-
Siegmund lemma, which shows that (uk) converges a.s. strongly to u∗.

Since (uk) strongly converges, it is bounded. Using the Lipschitz property of J over all

bounded set, we get that J (uk) → J (u∗) as k goes to infinity, and this completes the

proof. 2

Theorem 2.2 shows the role played by the constraints. It is quite strange to
notice that we are able to prove the convergence without a decreasing sequence for
the gradient steps ρk, provided that the gradient at the optimum is equal to zero.
Other assumptions on the cost function j are usual ones, and assumptions on the so
called kernels are not restrictive at all, as will be discussed in the next subsection.
We provide in the next subsection another convergence proof, which leads to a quite
similar result, with slightly different assumptions.

2.3. Projection on a vector subspace. We prove the convergence of our al-
gorithm in the case of a projection on a vector subspace, with slightly different
assumptions, and a result even in the convex case.

Theorem 2.3. (i) Assume that for almost all ξ ∈ R
m, u 7→ j(u, ξ) is convex, lower

semicontinuous. Assume that j is a normal integrand. If moreover J is coercive
on Uf which is a closed sub vector space of L2(Rm, Rp), then (1) has solutions, and
we denote by U∗ the set of solutions.
(ii) Assume that there exist b1, b2 > 0 such that:

∀k ∈ N, rk(·) := ∇uj(uk(·), ·), ‖rk − E

(

rk(ξ)
1

εk
Kk(ξ, ·)

)

‖ ≤b1ε
k
(

1 + ‖rk‖
)

,

(15a)

∀x ∈ R
m, E

(

(Kk(x, ξ))2
)

≤b2ε
k,(15b)

(iii) Assume that the sequences (εk) and (ρk) are such that:

(16) εk, ρk > 0,
∑

k∈N

εkρk = +∞,
∑

k∈N

ρk(εk)2 < +∞,
∑

k∈N

(ρk)2εk < +∞.

If moreover j has linearly bounded gradients, i.e. there are c, d > 0, such that for
all u ∈ R

p,

(17) ∀ξ ∈ R
m, ‖∇uj(u, ξ)‖p ≤ c‖u‖p + d,

then the sequence (uk) generated by Algorithm 2.1 is such that:

lim
k→∞

J (uk) = J (u∗), a.s.

with u∗ ∈ U∗, and every cluster point of (uk) in the weak topology is in U∗.
(iv) Moreover, if j is strongly convex (in u) with modulus B > 0, then U ∗ reduces
to a singleton and (uk) a.s. strongly converges to the unique optimal solution of
(1).

Proof : The proof follows the scheme used by [Cohen and Culioli, 1990].
Let us denote by u∗ some optimal solution of (1). Let us define a Lyapunov function
Λ : L2(Rm, Rp) → R by:

∀u ∈ L2, Λ(u) :=
1

2
‖u − u∗‖2.
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We study now the variation of the Lyapunov function between two iterations k and k + 1.

δk+1 := Λ(uk+1) − Λ(uk) =
1

2
‖uk+1 − u∗‖2 −

1

2
‖uk − u∗‖2,

=
1

2
‖uk+1 − uk‖2 + 〈uk+1 − uk, uk − u∗〉,

using Pythagore’s equality. By the nonexpansiveness property of the projection, it holds
by definition of uk+1 that:

‖uk+1 − uk‖ ≤ ρk‖∇uj(uk(ξk+1), ξk+1)Kk(ξk+1, ·)‖.

We now define Gk(·, ·) = 1
εk Kk(·, ·), rk(·) = ∇uj(uk(·), ·), and fk(·) = εkrk(ξk+1)Gk(ξk+1, ·).

We focus on 〈uk+1 −uk, uk −u∗〉. For the simplicity of our notations, we denote by Π the
projection on Uf .

〈uk+1 − uk, uk − u∗〉 =〈Π
“

uk − ρkfk
”

− uk, uk − u∗〉,

= − ρkεk〈Π
“

rk(ξk+1)Gk(ξk+1, ·)
”

, uk − u∗〉,

= − ρkεk〈rk(ξk+1)Gk(ξk+1, ·), uk − u∗〉.

Hence,

δk+1 ≤
(ρkεk)2

2
‖rk(ξk+1)Gk(ξk+1, ·)‖2 − ρkεk〈rk(ξk+1)Gk(ξk+1, ·), uk − u∗〉,

≤
b2(ρ

k)2εk

2
‖rk(ξk+1)‖2

p + ρkεk〈rk − rk(ξk+1)Gk(ξk+1, ·), uk − u∗〉

+ ρkεk〈rk, u∗ − uk〉.(18)

The second inequality is due to the assumption (15b) on the kernels Kk. Using convexity
of J , one has:

(19) 〈rk, u∗ − uk〉 ≤ J (u∗) − J (uk) ≤ 0.

Gathering (18) and (19) yields:

Λ(uk+1) − Λ(uk) ≤
b2(ρ

k)2εk

2
‖rk(ξk+1)‖2

p + ρkεk〈rk − rk(ξk+1)Gk(ξk+1, ·), uk − u∗〉

+ ρkεk
“

J (u∗) − J (uk)
”

.(20)

We take now the conditional expectation in (20) with respect to Fk := σ(ξ1, . . . , ξk), i.e.,
with respect to the past draws. Since ξk+1 is independent from the past draws, it yields

E

“

Λ(uk+1) − Λ(uk)|Fk
”

≤
b2(ρ

k)2εk

2
‖rk‖2 + ρkεk〈rk − E

“

rk(ξ)Gk(ξ, ·)
”

, uk − u∗〉

+ ρkεk
“

J (u∗) − J (uk)
”

.(21)

Using the linearly bounded gradient assumption on J , one has also, with the classical
inequality (a + b)2 ≤ 2a2 + 2b2

‖rk‖2 ≤ c1‖u
k − u∗‖2 + c2,

with c1, c2 > 0. Thus,

E

“

Λ(uk+1) − Λ(uk)|Fk
”

≤
b2c1(ρ

k)2εk

2
‖uk − u∗‖2 +

b2c2(ρ
k)2εk

2

+ ρkεk〈rk − E

“

rk(ξ)Gk(ξ, ·)
”

, uk − u∗〉

+ ρkεk
“

J (u∗) − J (uk)
”

.(22)
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We now use Cauchy Schwartz’s inequality in (22):

E

“

Λ(uk+1) − Λ(uk)|Fk
”

≤
b2c1(ρ

k)2εk

2
‖uk − u∗‖2 +

b2c2(ρ
k)2εk

2

+ ρkεk‖rk − E

“

rk(ξ)Gk(ξ, ·)
”

‖‖uk − u∗‖

+ ρkεk
“

J (u∗) − J (uk)
”

.(23)

We use the assumption on kernels (15a), and it yields:

E

“

Λ(uk+1) − Λ(uk)|Fk
”

≤
b2c1(ρ

k)2εk

2
‖uk − u∗‖2 +

b2c2(ρ
k)2εk

2

+ b1ρ
k(εk)2

“

1 + ‖∇J (uk)‖
”

‖uk − u∗‖

+ ρkεk
“

J (u∗) − J (uk)
”

.(24)

Assumption (17) implies that there exist two scalars c3, c4 > 0 such that:

∀u ∈ L2, ‖∇J (u)‖ ≤ c3‖u‖ + c4.

By the last inequality and the classical inequality x ≤ x2 + 1, we obtain:

E

“

Λ(uk+1) − Λ(uk)|Fk
”

≤
b2c1(ρ

k)2εk

2
‖uk − u∗‖2 +

b2c2(ρ
k)2εk

2

+ b1ρ
k(εk)2(1 + c3 + c4)‖u

k − u∗‖2 + b1ρ
k(εk)2(1 + c4)

+ ρkεk
“

J (u∗) − J (uk)
”

.

By definition of Λ, we have finally:

(25) E

“

Λ(uk+1) − Λ(uk)|Fk
”

≤ αkΛ(uk) + βk + ρkεk
“

J (u∗) − J (uk)
”

,

with αk := b2c1(ρ
k)2εk +2b1ρ

k(εk)2(1+ c3 + c4) and βk := b2c2(ρk)2εk

2
+ b1ρ

k(εk)2(1+ c4).

(αk) and (βk) are by assumption summable sequences. Let us now take the expectation
in (25), and define yk := E

`
Λ(uk)

´
. By optimality of u∗,

(26) yk+1 − yk ≤ αkyk + βk.

Using Lemma 2.8, it shows that (yk) is bounded, by, say M > 0. We prove that (Λ(uk))
is a convergent quasi-martingale. Indeed:

• (Λ(uk)) is by definition adapted to (Fk).
• By definition, Λ(uk) ≥ 0 for all k ∈ N, i.e., infk∈N E

`
Λ(uk)

´
> −∞.

• Let us consider Ck := {E
`
Λ(uk+1) − Λ(uk)|Fk

´
> 0}. It is clear that 1Ck is Fk

measurable. Using (25), we have:
X

k∈N

E

“

1Ck × (Λ(uk+1) − Λ(uk))
”

≤
X

k∈N

E

“

1Ck × E

“

Λ(uk+1) − Λ(uk)|Fk
””

,

≤
X

k∈N

E

“

1Ck × (αkΛ(uk) + βk)
”

,

≤
X

k∈N

(αkM + βk),

<∞,

since the sequences are summable.
• It is also clear that supk∈N

E
`
Λ(uk)−

´
< ∞, and consequently, using a result of

[Métivier, 1982] (pp. 49-51), (Λ(uk)) is a quasi-martingale and converges a.s. to
some integrable random variable. Hence, it is a.s. bounded, and by definition,
(uk) and (rk) are two a.s. bounded sequences in L2.

We now prove that (J (uk)) a.s. converges to J (u∗). Coming back to (25) and taking the
expectation gives:

ρkεk
E

“

J (uk) − J (u∗)
”

≤ αkyk + βk + yk − yk+1.

8



We sum this inequality for k = 0, . . . , n:
nX

k=0

ρkεk
E

“

J (uk) − J (u∗)
”

≤y0 − yn+1 +
nX

k=0

(αkM + βk),

≤M + M
nX

k=0

αk +
nX

k=0

βk.(27)

We make n → ∞: X

k∈N

ρkεk
E

“

J (uk) − J (u∗)
”

< ∞.

By optimality, all the terms under the expectation are a.s. nonnegative. Thus:

(28)
X

k∈N

ρkεk
“

J (uk) − J (u∗)
”

< ∞.

We now want to use Lemma 2.9. Let l ∈ N. By convexity,

J (ul) − J (ul+1) ≤〈∇J (ul), ul − ul+1〉,

=ρlεl〈rl, ΠUf

“

rl(ξl+1)Gl(ξl+1, ·)
”

〉.(29)

We take now the conditional expectation with respect to F l:

J (ul) − E

“

J (ul+1)|F l
”

≤ρlεl〈rl, ΠUf

„

E

„

rl(ξ)
1

εl
Kl(ξ, ·)

««

〉,

≤ρlεl‖rl‖

„

‖E

„

rl(ξ)
1

εl
Kl(ξ, ·)

«

− rl‖ + ‖rl‖

«

,

≤ρlεlR
“

b1ε
l(1 + R) + R

”

,

≤ρlεlδ,(30)

with δ > 0, since we already know that (‖rk‖) is bounded by, say, some R > 0.Hence, we
can apply Lemma 2.9, with (28) and (30), and with our sampling space for probability
space, and with γk = εkρk. It yields

(31) lim
k→∞

J (uk) = J (u∗)

Let ū be a cluster point of (uk). Hence there is some subsequence (uφ(k)) which converges

to ū. Since Uf is a closed subspace, ū ∈ Uf , and by lower semi-continuity of J , it holds:

J (ū) ≤ lim inf
k→∞

J (uφ(k)) = J (u∗),

hence, ū ∈ U∗.
Suppose now that j is strongly convex with modulus B > 0. In this case, U ∗ reduces to
a singleton {u∗}. By definition,

(32) J (uk) − J (u∗) ≥ 〈∇J (u∗), uk − u∗〉 +
B

2
‖u∗ − uk‖2

By optimality, 〈∇J (u∗), uk −u∗〉 ≥ 0. (31) gives therefore the strong convergence of (uk)

to u∗, and it completes the proof. 2

Remark 2.4 (Choice of εk and ρk). For the choice of the two sequences εk and

ρk, we can take ρk = k−α and εk = k−β , with β ∈ [1/2, 1] and α ∈
[

1−β
2 , 1 − β

]

,

which yields to the assumptions (16). For example, α = 1/3 and β = 2/3 is a good
choice.

Remark 2.5 (Measurability of the stepsizes and kernels). The stepsizes (ρk) and
(εk), as the kernels Kk can be taken such that they are adapted to the sequences

of draws (ξk+1). For all k ∈ N, if εk, ρk and Kk(·, ·) are measurable with respect

to σ(ξ1, . . . , ξk), the proofs are always true. The Robbins-Siegmund Lemma holds
true with this measurability assumptions, and so do the results involving the quasi-
martingale result of Métivier.

9



Remark 2.6 (Choice of Kernels). Analogously, if we take the kernel to be Kk(x, y) =

δ(x)K
(

x−y

εk1/m

)

, with K : R
m → R such that

∫

Rm

K(x)dx = 1, K(x) = K(−x), for all x ∈ R
m,

assumptions (15a)–(15b) will be satisfied with all the usual laws for ξ, by taking if
ξ has a density p(ξ) over R

m, δ(x) = 1
p(x) .

Example 2.7. We here provide an illustration of our assumptions (16) on the two
sequences (ρk), (εk). This example has to be taken as an illustration, and absolutely
nothing more.
Consider Ξ = [0, 1] to be the noise space, and ξ a real random variable with uni-
form law on Ξ. Let εk = 1/(k + 1) be a sequence of decreasing steps, and let us
define Kk(x, y) = 1|x−y|≤εk/2 for all x, y ∈ Ξ. Such kernels will produce controls
differentiable almost everywhere.
Let us now define the indexes jn such that j0 = 0, and for n ≥ 1, jn is such that:

jn−1
∑

k=jn−1

εk ≤ 1,

jn
∑

k=jn−1

εk > 1.

Since
∑

k∈N
εk = +∞, this sequence is well defined. Consider now the sequence

(ξk) such that for all k ∈ N, ξjk+1 = εjk

2 , ξjk+2 = εjk+1+εjk

2 + ξjk+1, ξjk+3 =
εjk+2+εjk+1

2 + ξjk+2, . . . , ξjk+1 =
∑jk+1−2

n=jk
εn + εjk+1−1

2 , ξjk+1+1 = εjk+1

2 , and so on.
This sequence is also well defined. This construction is illustrated by figure 1, until
the jk+1st point.

Ξb

ξjk+1
b

ξjk+2
b

ξjk+1. . .

εjk

2
εjk+1

2
εjk+1−1

2

Figure 1. Quasi-Monte Carlo construction to cover Ξ = [0, 1]

Consider now the following algorithm, with a given nonnegative sequence (ρk):

∀ξ ∈ Ξ, uk+1(ξ) = uk(ξ) − ρkf(ξk+1)Kk(ξk+1, ξ),

with f : Ξ → R a Lipschitz continuous mapping with modulus L. By definition of
kernels Kk, this algorithm modifies the function uk only on the little ball of radius
εk/2 and centered on ξk+1. This algorithm is a quasi Monte Carlo version of our
preceding algorithm 2.1.
We now study this algorithm only on ξ = 0, and denote for simplicity uk(0) by vk.
It consists by definitions in:

(33) vjk+1 = vjk − ρjk
rjk ,

with rjk = f(ξjk+1)Kjk(ξjk+1 , 0). Notice first that rjk can be seen as a perturbation
of the function f , taken in 0. To ensure the convergence of algorithm (33), we can
therefore use the general convergence theorems for stochastic algorithms (see e.g.
[Bertsekas and Tsitsiklis, 1996]). A common condition is

(34)
∑

k∈N

ρjk = +∞,
∑

k∈N

(ρjk)2 < +∞.

10



We now try to have ρjk
= 1

k , which would be sufficient. By definition, we have
∑jk+1

n=jk
εk ' 1.

jk+1
∑

n=jk

εn '
∫ jk+1

jk

1

x
dx,

= [log(x)]
jk+1

jk
,

= log

(

jk+1

jk

)

.

Hence, we want to obtain log( jk+1

jk
) = 1, i.e., jk+1 = jke.With j0 = 1, it yields

jk = ek. Hence, ρn = 1
log(n) , for all n ∈ N. With εn = 1

n for all n ∈ N, the

assumption (16) is therefore satisfied.

2.4. A generalization of the open-loop stochastic gradient algorithm. In
this section, we consider again the same problem (1), with the particular feasible
set:

Uf := {u : R
m → R

p : u σ({∅, Rm}) − measurable,

u ∈ L2(Ξ, Rp), u(ξ) ∈ Γ(ξ) a.s.
}

.(35)

with Γ a closed convex measurable mapping from R
m to Rp. Uf defines therefore

the constant controls u ∈ R
p such that u ∈ Γ, where Γ abusively defines the range

of the mapping Γ, which is a closed convex of R
p. Problem (1) becomes therefore

an open-loop problem, equivalent to:

min
u∈Rp

E (j(u, ξ)) ,(36)

s.t. u ∈ Γ,

On the other hand, the updating step of algorithm 2.1 becomes:

(37) uk+1 = ΠΓ

(

uk − ρk∇uj(uk, ξk+1)E
(

Kk(ξk+1, ξ)|ξk+1
))

.

Assume now that ξ has a smooth density p w.r.t. the Lebesgue measure. Take a
kernel Kk defined as in Remark 2.6, by:

∀(x, y) ∈ (Rm)2, Kk(x, y) =
1

p(x)
K

(

x − y

(εk)1/m

)

,

with K verifying the kernel assumptions of Remark 2.6, and K(x) = 0 for all x s.t.
‖x‖m > 1. Then, we obtain:

∀x ∈ R
m, E

(

Kk(x, ξ)
)

=

∫

Rm

p(ξ)

p(x)
K

(

ξ − x

(εk)1/m

)

dξ,

=εk

∫

Rm

p(x + (εk)1/my)

p(x)
K(y)dy,

=εk + o
(

(εk)2
)

,

where the last equations are obtained through a change of variables and the Taylor
formula applied to p. Hence, we obtain the classical stochastic gradient algorithm,

uk+1 = ΠΓ

(

uk − ρkεk∇uj(uk, ξk+1) + o
(

ρk(εk)2
)

)

.

with decreasing steps εkρk, and some additional perturbation converging quickly to
0.
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2.5. Technical Lemmas. We here provide two technical lemmas we use in the
preceding convergence proof of theorem 2.3.

Lemma 2.8. Let (xk)k∈N be a sequence of nonnegative real numbers. Let (αk)k∈N

and (βk)k∈N be sequences of nonnegative real numbers such that
∑

k∈N
αk < +∞

and
∑

k∈N
βk < +∞. If we have:

∀k ∈ N, xk+1 − xk ≤ αkxk + βk,

then the sequence (xk)k∈N is bounded.

The proof can be found in [Cohen, 1984].

Lemma 2.9. Let (Ω,F , P) be some probability space, equipped with a filter (F k).
Let J be a real valued mapping from an Hilbert space H. Let (uk)k∈N be a sequence
of random variables with values in H, such that for all k ∈ N, uk is Fk-measurable,
and (γk)k∈N a sequence of nonnegative real numbers such that:

(i)
∑

k∈N
γk = +∞,

(ii) ∃µ ∈ R,
∑

k∈N
γk
(

J (uk) − µ
)

< +∞, and ∀k ∈ N, J (uk) − µ ≥ 0, a.s.

(iii) ∃δ > 0, ∀k ∈ N, J (uk) − E
(

J (uk+1)|Fk
)

≤ δγk, a.s.

Then (J (uk))k∈N a.s. converges to µ.

Proof : For all α ∈ R, let us define the subset Nα of N such that:

Nα :=
n

k ∈ N : J (uk) − µ ≤ α, a.s.
o

.

We will also denote by N c
α the complementary set of Nα in N. Assumptions (i− ii) imply

that Nα is not finite.
Following (ii), we have:

+∞ >
X

k∈N

γk
“

J (uk) − µ
”

≥
X

k∈Nc
α

γk
“

J (uk) − µ
”

≥ α
X

k∈Nc
α

γk.

It proves that for all β > 0, there is some nβ ∈ N such that
P

k∈Nc
α, k≥nβ

γl ≤ β.

Let ε > 0. Take α = ε/2 and β = ε/(2δ). For all k ≥ nβ , we have two possibilities:

• If k ∈ Nα, then J (uk) − µ ≤ α < ε.
• If k ∈ Nc

α, let m be the smallest element of Nα such that m ≥ k (we know that
it exists since Nα is not finite). We can hence write:

J (uk) − µ =J (uk) − E

“

J (um)|Fk
”

+ E

“

J (um)|Fk
”

− µ

=E

 
m−1X

l=k

J (ul) − E

“

J (ul+1)|F l
”

|Fk

!

+ E

“

J (um)|Fk
”

− µ,

≤δ

 
m−1X

l=k

γl

!

+ α ≤ δ

0

@
X

l∈Nc
α, l≥nβ

γl

1

A+ α ≤ ε.

2

3. Numerical applications

We now give a few numerical applications of our algorithm. The first thing to be
decided is to give a stopping test to Algorithm 2.1. Many tests can be implemented,
but a good one is to give a maximal number of iterations... or in the not projected
case to compute the norm of the true gradient ‖∇J (uk)‖ and to compare it with a
given threshold.

In the following, we will consider the kernels and sequences for all k ∈ N as:

• ∀x ∈ R
m, Kk(x, ·) := 1√

π
e−( ·−x

εk )
2

,

• εk = 1
kα ,

12



• ρk = 1
kβ ,

with uniform laws on the noises. Our algorithm is parametrized by two nonnegative
numbers: α and β respectively for the window size and the descent size of the
stochastic gradient.

Remark 3.1 (Convergence speed). For all the following examples, the convergence
speed stands for the graph representing the difference (J (uk) − J (u∗)) along the
iterations.

3.1. Least-Square problem. Let us here consider the case of estimating on [0, 1]

the real function x 7→ sin
(

100
x+1

)

. We consider the following cost function:

(38) ∀u, x ∈ R, j(u, x) =

(

u − sin

(

100

x + 1

))2

Let ξ be a real random variable following the uniform law on [0, 1]. We define J
to be:

∀u ∈ L2([0, 1], R), J (u) = E (j(u(ξ), ξ)) .

The gradient of j with respect to u is:

∀u, x ∈ R, ∇uj(u, x) = 2

(

u − sin

(

100

x + 1

))

.

We now apply our algorithm to the problem of minimizing J . Figure 2 shows uk

obtained by algorithm 2.1 respectively after 50, 200 and 1000 iterations. It also
shows the optimal feedback called u∗ and the error ‖uk(ξ) − u∗(ξ)‖p. The last
graph shows the convergence speed of the algorithm.

After 50 iterations After 200 iterations
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u u* u-u*

-1

-0.5
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 0.5

 1

 0  0.2  0.4  0.6  0.8  1

u u* u-u*

After 1000 iterations Convergence speed

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

u u* u-u*

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000

J(u)-J(u*)

Figure 2. Least Square Problem, feedback along the iterations,
and convergence speed
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It is clear that with the iterations, [0, 1] becomes more and more correctly ex-
plored by our random draws of ξ, and hence the feedback converges. Very quickly,
the general behaviour of u∗ is well captured, and then the finest behaviour is fitted
with more iterations.

3.2. Constrained Least-Square problem. We take exactly the same problem,
but with an additional bounding constraint. U f = {u : [0, 1] → R : −1/2 ≤ u(·) ≤
1/2}. The projection consists therefore only in bounding the maximal values of uk.
Let us denote [x]ba = min(max(x, a), b). Then it holds:

∀u ∈ L2([0, 1], R), ΠUf (u)(·) = [u(·)]1/2
−1/2.

The evolution of the control is showed by Figure 3. Exactly as before, we see that
our algorithm provides a good solution to the minimization problem.

After 50 iterations After 200 iterations

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

u u* u-u*

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

u u* u-u*

After 1000 iterations Convergence speed

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

u u* u-u*

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000

J(u)-J(u*) ||u-u*||2

Figure 3. Truncated Least Square Problem, feedback along the
iterations, and convergence speed

3.3. Reservoir management. After the previous academic examples, we give a
more practical example. We want to manage a reservoir. We give two examples,
the first one with a single time period, and the second one with two time periods,
and two sequential decisions.

3.3.1. Single time period. The cost function is here given by:

(39) ∀ξ ∈ [x, x] , ∀u ∈ [0, s], j (u, ξ) = −ξu −
√

ε + s − u,

with given thresholds x, x, s. s represents the available stock in the reservoir, u is
the control, i.e., the quantity we will produce, and ξ is a proportional selling price
(which will be the random part of the system). j is therefore composed of two
terms: uξ which represents the sales profit, and

√
ε + s − u which is the value at

14



the end of the game. We take ξ a real random variable with uniform law on [x, x],
and assume s to be fixed. Hence the criterion to be minimized is given by:

∀u ∈ L2([x, x] , R), J (u) = E (j(u(ξ), ξ)) .

The gradient is:

∇J (u)(ξ) = −ξ +
1

2
√

ε + s − u(ξ)
,

The optimal control is therefore:

∀ξ ∈ [x, x] , u∗(ξ) =

[

s + ε − 1

4ξ2

]s

0

.

It can be rewritten as follows, for all ξ ∈ [x, x]:

u∗(ξ) =











0 if ξ < 1
2
√

ε+s

s + ε − 1
4ξ2 if 1

2
√

ε+s
≤ ξ ≤ 1

2
√

ε

s if ξ > 1
2
√

ε

For the numerical application of our algorithm, we take s = 1, ε = 0.1, [x, x] =
[0.4, 2]. Figure 4 represents the control obtained after 500, 3000 and 10000 itera-
tions, the optimal one, and the error term for each possible value of the price.

After 500 iterations After 3000 iterations
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After 10000 iterations Convergence speed
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Figure 4. Reservoir Problem with one time period and one noise,
feedback along the iterations and convergence speed

Once again, it is clear that our algorithm provides a good solution to this prob-
lem.

We can also consider s to be stochastic, denoted by sss, independent from ξ. We
assign sss to follow a uniform law on [0, 1]. Hence, the cost function j becomes a
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function of the stock level sss, and we consider now the problem of minimizing the
following criterion:

∀u ∈ L2([x, x] × [0, 1], R), J (u) = E (j(u(ξ, sss), ξ, sss)) .

The theoretical computations lead to the same optimal control, which from now
on is a function of ξ the price level and s the stock level. The optimal control is
represented in Figure 5.

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2  0
 0.2

 0.4
 0.6

 0.8
 1

 0
 0.2
 0.4
 0.6
 0.8

 1

u*
       1

     0.8
     0.6

     0.4
     0.2

Figure 5. Reservoir Problem with one time period and two noises, Optimum

The application of our algorithm, with the same parameters as before yields
Figure 6 showing at the current iteration the feedback (top) and the corresponding
error term (bottom), along the iterations. Figure 7 shows the convergence speed
for this problem.

3.3.2. Two time periods. We finally consider an even more practical problem, which
is exactly the same as before, with two successive random prices, and two associated
controls. The problem is more complicated in the sense that there is a measura-
bility constraint on the first control: the first decision has to be taken prior to any
knowledge of the second price, except its conditional law with respect to the first
one. Mathematically, we consider the following cost function:

(40) j(u1, u2, ξ1, ξ2) = −u1ξ1 − u2ξ2 −
√

ε + s − u1 − u2,

for all (ξ1, ξ2) ∈ [x1, x1] × [x2, x2], and for all u1 ∈ [0, s], u2 ∈ [0, s − u1]. We take
for i = 1, 2, ξi to be a real random variable with uniform law on [xi, xi], such that
ξ1 and ξ2 are independent. Classically, the criterion to be minimized is given by:

J (u1, u2) = E (j(u1(ξ1), u2(ξ1, ξ2), ξ1, ξ2)) ,

with u1 ∈ L2([x1, x1] , R) and u2 ∈ L2(Πi=1,2 [xi, xi] , R). This way of stating the
problem expresses itself the measurability conditions on the sequential controls u1

and u2.

We now come to the theoretical solution of this problem. We solve it recursively,
using a classical dynamic programming procedure. We first compute the second
optimal feedback u∗

2, as a function of the two first prices ξ1 and ξ2 and of the first
feedback u1. It is exactly the same calculation as before, and it yields:

u∗
2(ξ1, ξ2, u1) =

[

ε + s − u1 −
1

4(ξ2)2

]s−u1

0

,
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After 100 iterations After 1000 iterations
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Figure 6. Reservoir Problem with one time period and two noises,
feedback (top) and error (bottom) along the iterations
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Figure 7. Reservoir Problem with one time period and two noises,
convergence speed
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which does not depend directly on ξ1. More explicitly:

u∗
2(ξ2, u1) =











s − u1 if ξ2 > 1
2
√

ε
,

ε + s − u1 − 1
4(ξ2)2

if 1
2
√

ε+s−u1
≤ ξ2 ≤ 1

2
√

ε
,

0 if ξ2 < 1
2
√

ε+s−u1

We can moreover compute the gradient of u∗
2 with respect to u1:

∇u1
u∗

2(u1, ξ2) =

{ −1 if ξ2 ≥ 1
2
√

ε+s−u1

0 else

We have to solve the following problem for all ξ1, by independence:

min
u1∈[0,s]

−u1ξ1 − E

(

u∗
2(ξ2, u1)ξ2 +

√

ε + s − u1 − u∗
2(ξ2, u1)

)

We hence compute the gradient of this new cost function with respect to u1 and
equalize it to zero:

−ξ1+E

(

ξ21[ 1

2
√

ε+s−u1

,x2](ξ2)

)

−E

(

1

2
√

s + ε − u1 − u∗
2(ξ2, u1)

1[ 1

2
√

ε+s−u1

,x2](ξ2)

)

+ E

(

1

2
√

s + ε − u1 − u∗
2(ξ2, u1)

)

= 0,

We assume that x2 < 1
2
√

ε
. We use now the explicit expression of u∗

2. Hence, the

last inequality reads

E

(

1

2
√

s + ε − u1 − u∗
2(ξ2, u1)

)

= ξ1.

We now compute this expectation (ξ2 follows the uniform law on [x2, x2]):

1

x2 − x2

∫ x2

x
2

dξ2

2
√

s + ε − u1 − u∗
2(ξ2, u1)

=ξ1, i.e.,

∫ 1

2
√

s+ε−u1

x
2

1

2
√

s + ε − u1
dξ2 +

∫ x2

1

2
√

s+ε−u1

ξ2dξ2 =(x2 − x2)ξ1,

For the simplicity of the computations, we define r = 1
2
√

ε+s−u1
. We can then

continue our calculus:

r(r − x2) +
(x2)

2

2
− r2

2
=(x2 − x2)ξ1,

(r − x2)
2 =

(

(x2)
2 − (x2)

2
)

+ 2ξ1(x2 − x2),

r =x2 +

√

2(x2 − x2)(ξ1 −
x2 + x2

2
)+.

We can express the optimal control u∗
1(ξ1):

u∗
1(ξ1) =











ε + s − 1

4

(

x2 +
√

2(x2 − x2)(ξ1 − x2+x
2

2 )+

)2











s

0

.

The optimal control u∗∗
2 is then given by u∗∗

2 (ξ1, ξ2) = u∗
2(ξ2, u

∗
1(ξ1)).

We now give few numerical results, with s = 1, ε = 0.1, x1 = x2 = 0.4, x1 = x2 =
2. Figure 8 shows u∗∗

2 obtained with these values, as a function of the two noises
ξ1, ξ2.
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Figure 8. Reservoir Problem with two time periods, Optimal
feedback at the second time step

We then apply our algorithm to the solution of this problem, and it yields the
graphs given in Figure 9, giving the evolution of u1 (top), u2 (middle) and the
error on u2 (bottom) after respectively 1000, 10000, and 100000 iterations. In the
previous examples, the simple bound constraints made the projection very easy to
perform. On the contrary, in this last example, performing the projection on the
subset defined by the constraint u2 ≤ s−u1 is quite difficult, requiring the calcula-
tion of an expectation which can only be performed numerically. We overcome this
difficulty by solving the equivalent penalized problem where u2 is only constrained
to be in [0, s], and j (u1, u2, ξ1, ξ2) = a1u1 +a2u2 for all u2 ≥ s−u1, with a1 and a2

being positive penalization constants appropriately chosen. The algorithm hence
converges correctly, but slowly.

Remark 3.2 (Computational time). The proposed algorithm (2.1) requires one
gradient evaluation per iteration, which in turn requires one evaluation of the con-
trol, i.e., a possibly projected sum of kernels. As the number of terms of this sum
grows over the iterations, this summation may represent the largest part of the
computation time. Nevertheless, since the kernel values tend to decrease quickly
toward zero away from their center, the use of kd-trees for spatial indexing of the
draws ξk may greatly improve the performance, resulting in logarithmic time evalu-
ation in the non-measurability constrained case, and sub-linear growth in the other
case.

Remark 3.3 (Heuristics for the stepsizes). It is worth noting that stochastic algo-
rithms are very sensitive to the choice of the stepsizes. We can propose a heuristic
to fit the steps (εk) and (ρk) in our algorithms. The problem here is to fit the

stepsizes ρk, εk for all k with the current draw ξk+1. Our idea is the following.
When you draw ξk+1, you will move your control around ξk+1, in a neighbourhood
defined by εk, and with a depth ρk. The next time you will fall in this neighbour-
hood, you may want to have a new neighbourhood and a new depth almost as large
as the preceding time, since the draws between thoses two steps did not contribute
to the control in this neighbourhood. We hence propose an adaptive way to fit
the stepsizes to the draw. Let us define iteratively for all k ∈ N, the mappings
fk : R

m → R by:

fk(·) =

k−1
∑

l=0

1

εl
Kl(ξl+1, ·).

Hence, for all k ∈ N, fk is Fk-measurable, and fk/k can be considered as an
approximation of the density function of the law µ of ξ. Let us now define for
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Figure 9. Reservoir Problem with two time periods, feedback at
the first time step (top), at the second time step (middle), and
error of the second feedback (bottom), along the iterations
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Figure 10. Reservoir Problem with two time periods, conver-
gence speed

all k ∈ N, gk = bfk(ξk+1)c. It means that the larger is the gk, the more the

neighbourhood of ξk+1 has been explored in the past steps. Then, one can choose
the next stepsizes ρk and εk. Practically, one chooses two nonnegative sequences
(ηk

ρ) and (ηk
ε ) which satisfy assumption (16), and one defines iteratively with k ∈ N:

εk = ηgk

ε , and, ρk = ηgk

ρ .

In many cases, (εk) and (ρk) will satisfy assumption (16), but for all k ∈ N, εk and
ρk are Fk+1-measurable, i.e., in one sense, anticipative, and we hence fail to prove
that this heuristic leads to the convergence of Algorithm (2.1).
To sum up, our idea is to ensure that the stepsizes decrease according to the
frequency each neighbourhood has been explored. Therefore, rarely explored re-
gions should have a slower decreasing speed for the corresponding window sizes and
depths, and vice versa for frequently visited regions.

4. Conclusion

We propose in this paper a new stochastic gradient type algorithm to solve
closed-loop stochastic optimization problems, and provide two convergence proofs
for general case with projection on a closed convex subset.
We then give few examples showing that this algorithm is tractable even for multi-
stage problems (our example is a three stage program without first open-loop de-
cision). For this kind of application, the projection operations we must do at each
iteration can be a computational hurdle.
Our approach can be compared with the approach consisting in a parametrization
of the feedback which is searched as a linear combination of given functions (the
basis). In our case, when we stop the algorithm, we obtain the feedback as a linear
combination of the successive kernels, and we know that it is not the optimal one
with respect to this particular sub space, but that it is optimal in an other sense,
with respect to the initial functional space (Note that another difference between
the two point of view comes from the projections we are doing).
From a theoretical point of view, the need for the gradient steps to be decreasing is
not yet completely clear, and we provide a proof (see Theorem 2.2) with constant
gradient steps in a particular case. Our work in the future will thus also be contin-
ued in this direction.
Another idea to improve the convergence speed is to use when it is possible, average
ideas or optimally fitted steps. This way has not yet been developed.
We think also that our algorithm can now be extended to the case of Temporal
Difference Learning for Stochastic Dynamic Programming problems, developped
by [Bertsekas and Tsitsiklis, 1996]. It will be our main axis in the future.
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