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Abstract. We present an algorithm for American option pricing based on stochastic approxi-

mation techniques. Besides working on a finite subset of the exercise dates (e.g. considering the
associated Bermudean option), option pricing algorithms generally involve another step of dis-

cretization, either on the state space or on the underlying functional space. Our work, which is an
application of a more general perturbed gradient algorithm introduced recently by the authors,

consists in approximating the value functions of the classical dynamic programming equation at

each time step by a linear combination of kernels. The so-called kernel-based stochastic gradient
algorithm avoids any a priori discretization, besides the discretization of time. Thus, it converges

toward the optimum of the non-discretized Bermudan option pricing problem.

We present a comprehensive methodology to implement efficiently this algorithm, including dis-
cussions on the numerical tools used, like the Fast Gauss Transform, or Brownian bridge.

We also compare our results to some existing methods, and provide empirical statistical results.

1. Introduction

In many fields of application, evaluating the price of an option relying on multiple assets is a
fundamental task. Since the early 70s, the field of mathematical finance and, more specifically,
the option valuation theory, has been studied very thoroughly. When early exercise is possible, for
American or Bermudean options, the problem can be formulated as an optimal stopping problem.
Numerous techniques exist to price american options, and most of them rely on a parametriza-
tion. After having discretized the time period, they either discretize the state space (see e.g. the
binomial or multinomial approaches in [Ros76], [CRR79], the stochastic mesh method in [BG04],
or the quantization algorithm in [BPP05]), or they consider a truncated functional basis for the
computation of the conditional expectation (see e.g. [LS01] and [TV99]) and try to optimize basis
coefficients using a least squares approach, or use Malliavin calculus to compute these conditional
exectations (see e.g. [FLL+99] and [FLLL01]). A survey of these Monte-Carlo techniques can be
found in [Gla03].

For classical diffusion models, there also exist PDE methods, like, for example, numerous finite
differences methods.

We propose an alternative approach for these problems that is non-parametric and avoids any
a priori discretization, besides the usual time discretization. Our method relies on the convolution
by kernels, typically Gaussians, and has been introduced in [BRS05]. It is different from the ap-
proaches developped in [LS01] and [TV99] since they consider a fixed truncated basis of L2 and
tend to optimize the coefficients by regression. On the contrary, we do not restrict ourselves to a
fixed subspace of L2, and the coefficients of kernel functions are not optimized by regression, but
obtained once for all by a single computation. Moreover this algorithm is quite easy to implement.

Our method can be introduced as an extension of the Robbins-Monro stochastic approximation
algorithm [RM51] and, more recently, the temporal difference algorithm TD(0). Temporal differ-
ence learning introduced by Sutton[Sut88] provides a way to carry out the Bellman operator fixed
point iterations while approximating the expectation through random sampling. Unfortunately,
this approach still requires a discretization of the state space which, in the large scale case, might
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not be practicable. To overcome the curse of dimensionality most approaches so far have pro-
posed to approximate the value function as a linear combination of basis functions. This approach,
called approximate dynamic programming, and first described in [BD59], has been thoroughly
studied. See [SB98] and [BT96] for detailed introductions to temporal difference and approxi-
mate dynamic programming methods. Recent and promising approaches to this problem include
a formulation of dynamic programming through a linear program which can ensure performance
guarantees [dFVR04]. Nevertheless, all these approaches require the use of a predefined finite func-
tional basis and therefore give up optimality, even asymptotically. Moreover, while the quality of
the approximation might increase with the number of functions used in the basis, the complexity
of each iteration (usually a least-square regression or linear program), renders the use of large basis
impracticable.

The alternative approach we introduce is based on functional gradient descent and uses an infi-
nite kernel basis, that preserves optimality under very light conditions while being implementable
in practice. In contrast to finite functional basis methods, where the a priori basis is used to
abitrarily generalize the local gradient information provided by each sample, we aim at general-
izing using only regularity assumptions of the value fonction and therefore better exploiting the
information provided.

Similar ideas date back to recursive nonparametric density estimation [WW69], and have been
proposed in the context of econometry in [CW98]. Our approach aims at providing more sensible
assumptions in the context of optimization and simpler proofs, based on a completely different
theory.

In our method, the iterates (the value functions) are represented by a sum of kernels, that are
usually Gaussian functions. In order to speed up the algorithm, we make use of the Improved Fast
Gauss Transform to approximate a sum of Gaussian functions. This technique has already been
used in mathematical finance, for instance in the multinomial and the stochastic mesh methods in
[BY03] for the case of discrete-time American-style options.

Several other techniques are presented and used to improve the rate of convergence of the al-
gorithm, such as averaging of the iterates [PJ92] and low discrepancy random number generators
combined with a Brownian bridge. The performance of our implementation is assessed through
some numerical experiments and comparisons against some well-known pricing algorithms.

This paper is organized as follows. In section 2, we draw the theoretical framework in which
we consider option pricing. We then introduce our algorithm to solve the classical Q-learning
formulation. We provide a convergence proof for the algorithm, based on a theorem on infinite
dimensional stochastic approximation developped in [BRS05].

In section 3, we discuss several implementation issues for the algorithm that are not specific to
option pricing, like the use of the Fast Gauss Tranform to compute efficiently a sum of Gaussian
functions, or the choice of the stepsizes used in the algorithm. We also describe our use of averaging
methods to accelerate the rate of convergence, based on the work by Polyak and Juditsky [PJ92].

In section 4, we introduce the use of quasi-Monte Carlo simulations enhanced with Brownian
bridge in the case of classical diffusion processes. Then, we statistically compare the results of
the kernel method to a few references in the literature. Finally, we give results for the pricing of
discrete-time American-Asian options.

2. Theoretical framework

2.1. Problem. An option is typically the right to sell or buy a stock at prescribed dates, before
a deadline called maturity. European options can be exercised only at maturity. On the contrary,
American options can be exercised whenever before maturity. Hence American option pricing is a
stopping time problem.
It is common to discretize American options as Bermudan options (see [CRR79], [BPP05] or [BM95]
for example), for which the exercise dates belong to a finite subset. In the rest, we only consider
Bermudan options.
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Let us note xt0 the initial stock price. We consider exercise dates {t0, t1, . . . , tN = T} and define
δt = min

0≤j≤N−1
(tj+1 − tj).

The price process X is assumed to be a Markov chain
{
Xtj

∈ S, 0 ≤ j ≤ N
}

with values in S ⊆ Rd

and Fj is the σ-field generated by the random variable (Xt0 , Xt1 , . . . , Xtj
).

For all j = 0, . . . , N , we denote recursively by πj the probability ditribution of Xtj
and note

π = ⊗N
j=0πj .

For any J, J̃ : SN+1 → RN+1, let us define the following inner product and norm:〈
J, J̃

〉
π

:=
N∑

j=0

∫
S

Jj (x) J̃j (x) πj (dx) =
N∑

j=0

〈
Jj , J̃j

〉
πj

, ‖J‖2π := 〈J, J〉π .

We then define: L2
(
SN+1, RN+1, π

)
=
{

J : SN+1 → RN+1 measurable so that ‖J‖2π < +∞
}

.

Moreover, we denote by L2
(
SN+1, RN+1, π

)
the Kolmogorov quotient of L2

(
SN+1, RN+1, π

)
, i.e.

where we divide out the kernel of the norm ‖·‖π (we identify two functions if they are equal almost
everywhere).

Let g : [0, T ]×S → R be the intrinsic value of the option. Then the price J0(x) of the Bermudan
option with maturity T is given by

(1) J0(x) = max
τ∈T (t0,tN )

E
[
g (τ,Xτ )

∣∣∣Xt0 = x
]
,

with T (t0, tN ) the set of stopping times adapted to (Fj)0≤j≤N .
From this definition we deduce the dynamic programming formulation equivalent to (1):

JN+1(x) = 0, ∀x ∈ S(2a)

Jj (x) = max
(
g (tj , x) , E

[
Jj+1(Xtj+1)

∣∣∣Xtj = x
])

, ∀x ∈ S, ∀j ∈ {0, . . . , N}.(2b)

Let us now define Qj as the expected payoff at time tj if we do not exercise the option. From (2):

Qj (x) = E
[
Jj+1(Xtj+1)

∣∣∣Xtj
= x

]
,∀x ∈ S. Hence it comes:

(3) ∀x ∈ S,∀j ∈ {0, . . . , N}, Jj(x) = max (g(tj , x), Qj(x)) .

Equation (2) now reads:

QN (x) = 0, ∀x ∈ S,(4a)

Qj (x) = E
[
max

(
g
(
tj+1, Xtj+1

)
, Qj+1

(
Xtj+1

)) ∣∣∣Xtj
= x

]
, ∀x ∈ S, ∀j ∈ {0, . . . , N − 1}.(4b)

We propose an algorithm that builds sequences of functions Qk =
(
Qk

j

)
0≤j≤N

that converge to

the solution Q∗ =
(
Q∗

j

)
0≤j≤N

of the Q-learning equation (4). Then we come back to the solution
J∗ of the classical dynamic programming equation (2), using equation (3).

2.2. Algorithm. We use the following notational convention: xk
tj

is k-th drawing (realization) of
the random process Xtj .
Then our algorithm works as follows: our estimates

(
Qk

j

)
0≤j≤N

of the optimal value functions(
Q∗

j

)
0≤j≤N

are represented by sums of k kernels, typically Gaussian functions. At every step, we
draw a trajectory of the price process. Then, starting with tN and subsequently tN−1 down to t0,
we update the value functions Qk

j in a neighbourhood of the drawings xk
tj

, beginning with function
Qk

N . Updates are computed using relations (4), by adding to Qk
j a kernel function centered on xk

tj

in order to obtain Qk+1
j , which is therefore a sum of (k + 1) kernel functions.

We propose the following algorithm:

Algorithm 2.1. Initialize Q0
j (·) = 0 for j ∈ {0, . . . , N},

Step k ≥ 0:

• Draw xk =
(
xk

tj

)
0≤j≤N

independently from the past drawings with respect to the law of the

Markov chain
(
Xtj

)
0≤j≤N

;
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• Update Qj , j ∈ {0, . . . , N}:

Qk+1
N (·) = 0,

Qk+1
N−1(·) = Qk

N−1(·) + ρk
N−1 ∆k

N−1 Kk
N−1(x

k
tN−1

, ·),
...

Qk+1
j (·) = Qk

j (·) + ρk
j ∆k

j Kk
j (xk

tj
, ·),

...
Qk+1

0 (·) = Qk
0(·) + ρk

0 ∆k
0 Kk

0 (xk
t0 , ·).

where

∆k
j = max

(
g
(
tj+1, x

k
tj+1

)
, Qk

j+1

(
xk

tj+1

))
−Qk

j (xk
tj

), ∀j ∈ {0, . . . , N − 1}.

Functions Kk
j are kernels, i.e. bounded mappings S × S → R. A typical choice of these kernels

is Gaussian function:

Kk(x, y) = e
−

‚‚‚ x−y

ηk

‚‚‚2

, with ηk → 0 when k → +∞.

For this particular kind of kernel function, we call ηk the bandwidth of the kernel. Barty et al.
proved in a particular case that the sequence strongly converges to Q∗ =

(
Q∗

j

)
0≤j≤N

. Steps ρk
j

and bandwidths ηk of the kernels must be decreasing scalar sequences, whose decreasing speed is
ruled by relations discussed in subsection 3.2.

As one can see, we are working directly in the infinite dimensional state space to which the
solution belongs. In spite of the infinite dimension, this method remains numerically tractable
since, for a Gaussian kernel and for each j in {0, . . . , N}, Qk

j may be represented by k triplets of
real numbers: the centers, the bandwidths, and the heights of the kernels. Indeed, it holds from
the description of Algorithm 2.1 that:

Qk
j (·) =

k∑
i=0

ρi
j ∆i

j Ki
j(x

i
tj

, ·), ∀j ≤ N, ∀k ∈ N.

In other words,
(
∆i

j , x
i
tj

, ηi
)

0≤i≤k
describes completely Qk

j .

2.3. Comparison with the Robbins-Monro and the TD(0) algorithms. Let us concentrate
on pointing out the main differences of algorithm 2.1 compared to the Robbins-Monro [RM51] and
the TD(0) [Sut88] algorithms.
In order to estimate the regression function Qj (x) = E

[
Jj+1(Xtj+1)

∣∣∣Xtj
= x

]
, Robbins and Monro

[RM51] introduced an iterative algorithm that averages the drawings of Xtj+1 |Xtj
= x, for all x in

the state space S. The Robbins-Monro stochastic approximation algorithm is the following:

Qk
j (x) = Qk−1

j (x) + ρk
j ∆k

j

(
x, yk(x)

)
,

where ∆k
j

(
x, yk(x)

)
= max

(
g
(
tj+1, y

k(x)
)
, Qk+1

tj+1

(
yk(x)

))
−Qk

j (x),

and yk
j (x) is a realization of the process Xtj+1 |Xtj

= x.
Note that the update here concerns every state x and that it can be rewritten using the underlying
random variable Xtj and a Dirac mass δ:

Qk
j (·) = Qk−1

j (·) + ρk
j E

(
∆k

j

(
Xtj

, y
)
δXtj

(·)
)

.

Instead of updating Qj for every state x, Sutton [Sut88] proposed to randomize this operation
by drawing realizations of the random variable Xtj

. We hence obtain the TD(0) algorithm:

Qk
j (x) =

{
Qk−1

j

(
xk

tj

)
+ ρk

j ∆k
j

(
xk

tj
, yk

(
xk

tj

))
if xk

tj
= x,

Qk−1
j (x) else.

Unfortunately, this algorithm can not be implemented if the state space is continuous and is
untractable if the state space is discrete but too large.
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Our algorithm consists in approximating the Dirac mass δxk
tj

(·) by a convolution with kernels,
whose bandwidths decrease along the iterations, using a well-known analysis result, for kernels
having certain properties (see e.g. [Boc55], Theorem 1.3.2):

f (·) = lim
k→+∞

E
(

f (X)
1
εk

Kk (X, ·)
)

,

where εk =
(
ηk
)d. Recall that ηk is the bandwidth of the kernel Kk(·, ·) and d is the dimension of

the state space S.

2.4. Comparison with the Longstaff-Schwartz and the Tsitsiklis-Van Roy algorithms.
On the other hand, algorithm 2.1 can seem very similar to the Longstaff-Schwartz [LS01] or the
Tsitsiklis-Van Roy [TV99] algorithms. Let us now recall these two techniques.
Longstaff and Schwartz’s algorithm works directly on the dynamic programming equation (2) and
is the result of two approximation steps:

(i) A linear regression that consists in replacing the conditional expectation
E
[
Jj+1(Xtj+1)

∣∣∣Xtj
= x

]
by a projection Pm

j onto the vector space (ei(x))0≤i≤m generated
by m a priori chosen measurable real valued functions on S (taken from a suitable basis, like
polynomial basis or wavelet basis for example).

(ii) Monte Carlo simulations and a least squares regression on the coefficients of the basis (ei(x))0≤i≤m

to achieve the projection.
Thus, this method computes functions Jj(·) backwards:

• Knowing JN+1(·) = 0, simulate prices at time tN and compute the regression to obtain J̃N

with the dynamic programming equation (2).
• For all j ≥ 1, knowing Jj(·), simulate prices at time tj−1 and compute the regression to

obtain J̃j−1 with the dynamic programming equation.
• Calculate J0(x) = max (g (t0, x) , J1 (x)).

Hence Longstaff and Schwartz’s algorithm consists in discretizing the functional space L2
(
SN , RN , π

)
to replace conditional expectations by projections. It is a kind of Galerkin method, for conditional
expectations. Then it approximates the projection by a classical Monte Carlo method.

Concerning Tsitsiklis and Van Roy’s algorithm [TV99], they introduce the Q-functions and
rewrite the dynamic programming equations like in (4). They also approximate the conditional
expectation by a suitable projection and compute Monte Carlo simulations. The difference with
Longstaff-Schwartz is that the use of Q-functions allows to exchange the maximum and the ex-
pectation in (2); it allows henceforth to proceed pathwise the least squares regression, i.e. on the
contrary to Longstaff and Schwartz’s algorithm, every new drawing of a price trajectory leads to
a better approximation of all Qj .

In our approach, we also consider the Q-functions but we have two main differences with the
two preceding algorithms:

(i) We do not replace the conditional expectation by any projection on a vector subspace of L2.
(ii) We do not optimize the coefficients behind the kernel functions, since it would become rapidly

a heavy burden: the coefficients are computed once for all with a single temporal difference
computation, i.e. a functional gradient step.

2.5. Convergence proof. Let us now present a convergence proof of 2.1, by means of perturbed
gradient analysis [BRS05].
We first introduce hj(x, y) := max (g (tj , x) , y), and:

Hj (Q) (·) = E
[
hj+1

(
Xtj+1 , Qj+1

(
Xtj+1

)) ∣∣∣Xtj
= ·
]
,∀j ∈ {0, . . . , N}.

American option pricing consists in solving the fixed point equation described componentwise
in equation (4), and summed up by:

(5) HQ = Q.
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In order to simplify notations, we consider that the steps ρk
j and εk

j are the same along the time
steps tj , and thus can be written ρk and εk. Moreover, we introduce:

rk
j = Hj(Qk)−Qk

j , γk = ρkεk, ηk =
(
εk
) 1

d .

Theorem 2.2. The solution Q∗ of the fixed point equation (5) exists and belongs to L2
(
SN , RN , π

)
.

Moreover, if, for all j ∈ {0, . . . , N}, there exist real numbers b1 and b2 such that the following
assumptions are fulfilled:

∥∥∥∥rk
j (·)−

∫
rk
j (x)

1
εk

Kk
j (x, ·)πj(dx)

∥∥∥∥
πj

≤ b1η
k
(
1 +

∥∥rk
j

∥∥
πj

)
, ∀k ∈ N(6a)

∀y ∈ Rd,

∫ (
Kk

j (x, y)
)2

πj(dx) ≤ b2ε
k, ∀k ∈ N(6b)

εk −−−−−→
k→+∞

0,
∑
k∈N

γk = +∞,
∑
k∈N

(γk)2

εk
< +∞,

∑
k∈N

γkηk < +∞,(6c)

the functions Qk
j (·) defined by Algorithm 2.1 a.s. converge, when k → +∞, to the solution Q∗

of the fixed point equation (5).

Proof:
We first introduce a new norm, that will be useful for the proof. For any J, J̃ : Sn → RN , let us define the
following inner product and norm:

(7)
D
J, J̃

E
π′

:=

NX
j=0

etj

Z
Jj (x) J̃j (x) πj (dx) =

NX
j=0

etj

D
Jj , J̃j

E
πj

, ‖J‖2
π′ := 〈J, J〉π′ .

One easily remarks that π and π′ are equivalent, since
√

et0 ‖J‖π ≤ ‖J‖π′ ≤
√

etN ‖J‖π.

1. Let us first prove that there exists a real number 0 ≤ a < 1 such that:

(8) ∀Q, Q̃ ∈ L2
“
SN , RN , π

”
,

‚‚‚H(Q)−H(Q̃)
‚‚‚

π′
≤ a

‚‚‚Q− Q̃
‚‚‚

π′
.

Recall that we have by definition of H:

Hj(Q)(x) =

(
E

h
max

`
g(tj+1, Xtj+1), Qj+1(Xtj+1)

´ ˛̨̨
Xtj = x

i
, if j ∈ {0, . . . , N − 1},

0 if j = N.

By Jensen’s inequality, for Q, Q̃ ∈ L2
`
SN , RN , π

´
:

˛̨̨
Hj(Q)(Xtj )−Hj(Q̃)(Xtj )

˛̨̨2
≤ E

h“
max

`
g(tj+1, Xtj+1), Qj+1(Xtj+1)

´
−max

`
g(tj+1, Xtj+1), Q̃j+1(Xtj+1)

´”2 ˛̨̨
Xtj

i
,

≤ E
»“

Qj+1(Xtj+1)− Q̃j+1(Xtj+1)
”2 ˛̨̨

Xtj

–
.

By taking the expectation on both sides, we obtain:

etj E
»“

Hj(Q)(Xtj )−Hj(Q̃)(Xtj )
”2

–
≤ etj E

»“
Qj+1(Xtj+1)− Q̃j+1(Xtj+1)

”2
–

,

= etj−tj+1| {z }
≤e−δt

etj+1E
»“

Qj+1(Xtj+1)− Q̃j+1(Xtj+1)
”2

–
,
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since δt = min
0≤j≤N−1

(tj+1 − tj). Now, we can sum on index j, and by using the terminal condition

HN (Q)(x) = 0 = QN (x), we obtain:

N−1X
j=0

etj E
»“

Hj(Q)(Xtj )−Hj(Q̃)(Xtj )
”2

–
≤ e−δt

N−2X
j=0

etj+1E
»“

Qj+1(Xtj+1)− Q̃j+1(Xtj+1)
”2

–
,

≤ e−δt
N−1X
j=1

etj E
»“

Qj(Xtj )− Q̃j(Xtj )
”2

–

+ e−δtet0E
»“

Q0(Xt0)− Q̃0(Xt0)
”2

–
,

i.e.:
‚‚‚H(Q)−H(Q̃)

‚‚‚
π′
≤
√

e−δt

‚‚‚Q− Q̃
‚‚‚

π′
.

Hence H is a contraction mapping and there exists a solution Q∗ to the fixed point equation (5) that
belongs to L2

`
SN , RN , π′

´
. Since π and π′ are equivalent, the solution Q∗ also belongs to L2

`
SN , RN , π

´
.

2. Now, we transform our fixed point problem into a minimization problem and claim that our algo-
rithm consists in a perturbed gradient algorithm, in the sense defined in [BRS05], of which we verify the
assumptions.
Fixed point equation (5) may be rewritten as a minimization problem:

min
Q∈L2(SN ,RN ,π′)

1

2
‖Q−Q∗‖2

π′

with Q∗ the solution of the fixed point problem.
Our update equation can be written as:

Qk+1
j (·) = Qk

j (·) + γk

0BBBB@−Qk
j + Hj(Q

k)| {z }
sk

j

+−Hj(Q
k) + Qk

j + ∆k
j

1

εk
Kk

j (xk
j , ·)| {z }

wk
j

1CCCCA ,

where sk represents the ”true” descent direction we should choose, and wk is the perturbation we introduce
by replacing the functional gradient direction by a local approximation.
First, we have to prove that sk is a descent direction in the sense of the assumption of [BRS05]. This
is achieved by applying Cauchy-Schwarz inequality and the contraction property obtained above. More
precisely:

NX
j=0

etj

D
sk

j , Qk
j −Q∗

j

E
πj

=

NX
j=0

etj

»D
−Qk

j + Q∗
j , Qk

j −Q∗
j

E
πj

+
D
Hj(Q

k)−Hj(Q
∗), Qk

j −Q∗
j

E
πj

–
,

≤ −
‚‚‚Qk −Q∗

‚‚‚2

π′
+

‚‚‚H(Qk)−H(Q∗)
‚‚‚2

π′
×

‚‚‚Qk −Q∗
‚‚‚2

π′
,

≤
“
−1 + e−δt

”
| {z }

<0

‚‚‚Qk −Q∗
‚‚‚2

π′
,

and we can conclude that sk
j is a descent direction for the minimization problem.

Now we must verify the two assumptions of [BRS05] concerning the perturbation wk.

3. We denote Fk the σ-field generated by the random variable
`
x1, . . . , xk

´
and Ek [·] the conditional

expectation with respect to Fk. One can directly observe that Qk is Fk-measurable.
The first result we need on wk is that there exists a real number b1 such that:

∀k ∈ N,
‚‚‚Ek

h
wk

i‚‚‚
π′
≤ b1η

k
“
1 +

‚‚‚H(Qk)−Qk
‚‚‚

π′

”
.
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Using measurability and conditional expectation properties, we have:

Ek
h
wk

j (·)
i

= Qk
j (·)−Hj(Q

k) (·)

+ Ek

»
hj+1

“
xk+1

tj+1 , Qk
j+1(x

k+1
tj+1)

” 1

εk
Kk

j (xk+1
tj

, ·)−Qk
j (xk+1

tj
)

1

εk
Kk

j (xk+1
tj

, ·)
–

,

Ek
h
wk

j (·)
i

= Qk
j (·)−Hj(Q

k) (·)

+ E

26664E
h
hj+1

“
xtj+1 , Qk

j+1(xtj+1)
” ˛̨̨

xtj

i
| {z }

Hj(Qk)(xtj
)

1

εk
Kk

j (xtj , ·)

37775
−

Z
Qk

j (x)
1

εk
Kk

j (x, ·)πj(dx)

Recall that rk
j = Hj(Q

k)−Qk
j . Hence:

Ek
h
wk

j (·)
i

= −rk
j (·) +

Z
rk

j (x)
1

εk
Kk

j (x, ·)πj(dx),

and:

(9)
‚‚‚Ek

h
wk

j

i‚‚‚
πj

≤ b1η
k

„
1 +

‚‚‚rk
j

‚‚‚
πj

«
,

by assumption (6a). The result is obtained by summing relation (9) on index j.

4. Now we need to prove that:

(10) ∀k ∈ N, Ek

»‚‚‚wk
‚‚‚2

π′

–
≤ A

„
1 +

1

βk

‚‚‚rk
‚‚‚2

π′

«
,

with βk having the same behavior as εk (assumption (6c)).
Recall that:

wk
j (·) := −Hj(Q

k) (·) + Qk
j (·) + ∆k+1

j

1

εk
Kk

j (xk
tj

, ·).

We already have
‚‚Hj(Q

k)−Qk
j

‚‚2

πj
=

‚‚rk
j

‚‚2

πj
. Let us give an upper bound for the third term in wk

j . By

Assumption (6b):‚‚‚‚∆k+1
j

1

εk
Kk

j (xk
tj

, ·)
‚‚‚‚2

πj

≤ 1

εk

˛̨̨
∆k+1

j

˛̨̨2
,

≤ 1

εk

˛̨̨ “
hj+1

“
xk+1

tj+1 , Qk
j+1(x

k+1
tj+1)

”
−Hj(Q

∗)(xk+1
tj

)
”

−
“
Qk

j (xk+1
tj

)−Q∗
j (x

k+1
tj

)
” ˛̨̨2

.

By taking the conditional expectation on both sides and summing on index j:

NX
j=0

etj Ek

"‚‚‚‚∆k+1
j

1

εk
Kk

j (xk
tj , ·)

‚‚‚‚2

πj

#
≤ 1

εk

NX
j=0

etj

„
2

‚‚‚Hj(Q
k)−Hj(Q

∗)
‚‚‚2

πj

+ 2
‚‚‚Qk

j −Q∗
j

‚‚‚2

πj

«
,

≤ 2
1

εk

„“
e−δt

”2

+ 1

« ‚‚‚Qk −Q∗
‚‚‚2

π
.

Let us note rk =
`
rk

j

´
. By triangle inequality:‚‚‚Qk −Q∗

‚‚‚
π′
≤

‚‚‚rk
‚‚‚

π′
+

‚‚‚H(Qk)−H(Q∗)
‚‚‚

π′
,

so that, by equation (8): ‚‚‚Qk −Q∗
‚‚‚2

π′
≤ 1

(1− e−δt)2

‚‚‚rk
‚‚‚2

π′
,

Hence: ‚‚‚wk
‚‚‚2

π′
≤ 2

‚‚‚Qk −H(Qk)
‚‚‚2

π′| {z }
‖rk‖2

π′

+2

NX
j=0

etj

‚‚‚‚∆k+1
j

1

εk
Kk

“
xk

tj
, ·

”‚‚‚‚2

π′j

,
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and:

E
»‚‚‚wk

‚‚‚2

π′

–
≤ 2

‚‚‚rk
‚‚‚2

π′
+ 2

NX
j=0

etj E

"‚‚‚‚∆k+1
j

1

εk
Kk

“
xk

tj
, ·

”‚‚‚‚2

π′j

#
| {z }

≤2 1
εk ((e−δt)2+1)‖Qk−Q∗‖2

π′

,

≤ 2
‚‚‚rk

‚‚‚2

π′
+ 4

1

εk

“
(e−δt)2 + 1

” ‚‚‚Qk −Q∗
‚‚‚2

π′| {z }
≤ 1

(1−e−δt)2
‖rk‖2

π′

,

Finally:

E
»‚‚‚wk

‚‚‚2

π′

–
≤ 2

‚‚‚rk
‚‚‚2

π′
+ 4

1

εk

1 +
`
e−δt

´2

(1− e−δt)2

‚‚‚rk
‚‚‚2

π′
,

≤ 1

βk

‚‚‚rk
‚‚‚2

π′
,

with 1
βk := 2 + 4 1

εk

1+(e−δt)2

(1−e−δt)2
. Hence Assumption (10) is fulfilled.

Since all assumptions of [BRS05] are satisfied, we deduce that (Qk
j ) a.s. strongly converges to (Q∗

j ). 2

In practice, we use the implicit version of algorithm 2.1. Indeed, when we update Qk
j (·) into

Qk+1
j (·), we already have Qk+1

j+1 (·) because we compute the update backward in time. Hence we
can use as temporal difference the quantity:

∆k
j = max

g
(
tj+1, x

k
tj+1

)
, Qk+1

j+1

(
xk

tj+1

)
︸ ︷︷ ︸

instead of Qk
j+1

“
xk

tj+1

”

−Qk
j (xk

tj
).

3. Practical Discussion

We here discuss several numerical tools that are useful to ensure a reasonable practical con-
vergence speed for our algorithm. We explain how we make use of the Fast Gauss Transform to
compute sums of Gaussian functions. Then we discuss the choice of the stepsizes for the algorithm
in subsections 3.2 and 3.3.

3.1. Implementation with Fast Gauss Transform. Even if algorithm 2.1 is quite easy to
implement, its computation is a priori quadratic in the number of iterations. Indeed, the number
of kernels grows linearly with the number of iterations. Recall that, at iteration k, for time step
tj , one has to compute:

Qk
j (·) = Qk−1

j (·) + ρk
j ∆k

j Kk
j (xk

tj
, ·),

where: ∆k
j = max

(
g
(
tj+1, x

k
tj+1

)
, Qk−1

j+1

(
xk

tj+1

))
−Qk−1

j (xk
tj

).
The main problem is thus that at every step k, one needs to compute the temporal difference, which
is a difference between two sums of k Gaussian functions, for every time step tj , j ∈ {0, . . . , N}.
Hence the global cost of the algorithm is O

(
k(k+1)

2

)
. Challenge is here to reduce the computation

time at each step, which is achieved by using Fast Gauss Transform (FGT) techniques.

FGT has been introduced by Greengard and Strain [GS91] to efficiently compute sums of Gauss-
ian functions. Their original problem is slightly different from ours since they consider a large
number of Gaussian functions to be evaluated on a large number of points. Their idea is an adap-
tion of the more general Fast Multipole Method, introduced by Greengard and Rokhlin [GR87],
which consists in considering two different expansions of the Gaussian above its center: either a
far-field Hermite series or a local Taylor series. This method has been applied to many examples
in low-dimensional cases, because it reduces the computation to something constant with respect
to k. Unfortunately, this constant grows exponentially with the dimension, for two reasons:
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(i) The number of terms in the Hermite series grows exponentially with dimension,
(ii) The space subdivision scheme used by the FGT is a uniform box subdivision scheme which

is tolerable in low dimensions but is extremely inefficient in higher dimensions.

The drawbacks of the FGT in dimension above 3 comes from the blind extension of the one-
dimensional case to the multi-dimensional case, by treating the multivariate Gaussian as a product
of univariate Gaussians. A new approach proposed by Yang et al. [YDGD03] overcomes this
weakness. We now present this technique, when applied to our algorithm.

We restrict the explanation to the time step tj and to a fixed kernel bandwidth η. Let us first
describe the space subdivion scheme, which builds a set of clusters, each represented by its center,
incrementally along the iterations:

• Initialize the list of centers with the first drawing x1
tj

.
• At every step, say k, if the distance between the new drawing xk

tj
and the nearest center is

greater than η, then add xk
tj

to the list of centers, else associate xk
tj

with the nearest center
from it.

This procedure defines a set of Nk clusters that draw a partition of the drawings. Moreover, the
operation of finding the nearest center from a drawing is done in constant time, the constant being
the number of clusters Nk.

Now let us precise how we proceed with the evaluation of the sum of Gaussians. Suppose that
x and y are two real vectors in Rd, and that c is the the center of the cluster associated to x. Let
us expand the Gaussian in the following way:

(11) e−‖y−x‖2/η2
= e−‖∆y‖2/η2

e−‖∆x‖2/η2
e2∆y·∆x/η2

,

where ∆y = y − c and ∆x = x − c. In expression (11), the first two exponential terms can be
evaluated individually at either x or y. The only problem left is to evaluate the last term where
x and y are entangled. One way of breaking the entanglement is to expand the exponential while
paying attention to the fact that the inner product is nothing else than a real number. Let us note:

|α| = α1 + · · ·+ αd, xα = xα1
1 · · ·xαd

d , α! = α1! · · ·αd!.

For any x and y real vectors in Rd, we have:

e2x·y =
∑
n≥0

2n(x · y)n

n!
, and (x · y)n =

∑
|α|=n

n!
α1! . . . αd!

xα × yα.

Thus we obtain the following expansion formula for (11):

(12) e−‖y−x‖2/η2
= e−‖∆y‖2/η2

e−‖∆x‖2/η2 ∑
α≥0

2|α|

α!

(
∆y

η

)α

×
(

∆x

η

)α

.

In (12) lies the very improvement of this technique when compared to the FGT. Indeed, a trun-
cation of this multivariate expansion at degree p means that we consider α1 + α2 + · · · + αd ≤ p,
while with FGT, it means that α1 ≤ p, . . . , αd ≤ p. The number of coefficients in the expansion is
thus reduced from pd in the FGT to (p+d)!

p!d! in the IFGT. As an example, when d = 12 and p = 10,
the original FGT needs 1012 terms, while the IFGT needs only 646646. For d →∞ and moderate
p, the number of terms becomes O(dp).

Let us now apply this technique to our incremental algorithm. Recall that, at iteration k and
time step tj , we need to calculate:

Qk
j (xk

tj
) =

k∑
i=0

ρi
j ∆i

j Ki
j(x

i
tj

, xk
tj

), ∀j ≤ N.

Recall that we have divided the space into Nk η-wide clusters Bs with centers cs. Let us note
Is, 1 ≤ s ≤ Nk the set of indexes such that:

i ∈ Is ⇐⇒ xi
tj
∈ Bs ⇐⇒ cs nearest center from xi

tj
,
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we obtain the following evaluation rule for the temporal difference computation in Algorithm
2.1:

Qk
j (xk

tj
) =

Nk∑
s=1

∑
α≥0

2|α|

α!
Cs(α)e−

‖xk
tj
−cs‖2

η2

(
xk

tj
− cs

η

)α

,(13a)

Cs(α) =
∑
i∈Is

ρi
j ∆i

j e
−
‖xi

tj
−cs‖2

η2

(
xi

tj
− cs

η

)α

.(13b)

Thus, one can see in (13) that the number of operations for an evaluation is linear with respect to
the number of centers, which is supposed to be much lower than the number of points. Practically,
we use the following scheme:

• At iteration k, compute the temporal difference using (13) and the drawing xk
tj

. It can be
seen as collecting the influence of the boxes around xk

tj
.

• Update Cs(α), with s the index of the box in which xk
tj

lies. This can be seen as adding
the influence of the new kernel in its box:

Cs (α) = Cs (α) + ρk
j ∆k

j e
−
‖xk

tj
−cs‖2

η2 .

As one can see, in order to apply IFGT, one needs constant bandwidths η. However, our al-
gorithm works with decreasing bandwidths ηk. Thus, for the application of the IFGT to our
algorithm, we choose piecewise constant decreasing bandwidths, and associate a space partition
and a set of coefficients C

(l)
s (α) to every step l in the piecewise constant sequence (ηk). In other

words, each time a lower bandwidth size is attained, only the coefficients associated with the new
partition are updated. However, coefficients associated to the ”old” partitions are still used for
evaluation.

3.2. Choice of the steps. Recall that ρk is the multiplying factor in the temporal difference and
ηk is the bandwidth of kernel Kk. To ensure the convergence of the algorithm, one needs the
following relations:∑

k∈N
ρkεk = +∞,

∑
k∈N

(
ρk
)2

εk < +∞,
∑
k∈N

ρkεkηk < +∞,

where ηk = (εk)
1
d and d is the dimension of the space.

Let us choose ρk ' 1
kα , εk ' 1

kβ , with α, β ∈ R. Then we have the following relations: 0 ≤ α + β ≤ 1,
1 < α + 2β,
1 < α + β(1 + 1

d ).

We draw in Figure 1 the domain where the powers of the steps εk and ρk can be chosen. When
the dimension of the space grows, the relations between the powers of the steps become:

(14) α + β = 1, α > 0, β > 0,

i.e. the triangle vanishes on the segment α + β = 1.
To choose the most efficient powersteps within this triangle, statistical tests on a large number of

runs seems to be the most reasonable. It is a tradeoff between robustness and speed of convergence.
In section 4, we detail how we performed such a statistical analysis.

3.3. Acceleration of the rate of convergence by averaging. We know that for a finite di-
mensional stochastic gradient type algorithm, the highest rate of convergence is given by methods
requiring a large amount of a priori data. Another way of developping optimal algorithms (algo-
rithms having the highest rate of convergence) has been studied by Polyak and Juditsky [PJ92]. It
is based on the idea of averaging the iterates, while using larger stepsizes for the approximation.
This improvement is one of the most important in this field since the 1960s. It is based on the
paradoxical idea that a slow algorithm having less than optimal convergence rate can be averaged
and attain an optimal rate of convergence.
We note Q̂k

j the k-th averaged estimate of function Q∗
j and replace the update equation (2.1) by
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d
d+1

1
2

d
d+2

1
d+2 1

1
β

α

Figure 1. Domain where α and β can be chosen

the following two-step update for all j ≤ N :
Qk+1

j (·) = Qk
j (·) + ρk

j ∆k
j Kk

j (xk
j , ·),

Q̂k+1
j (·) = 1

k+1

∑k+1
l=1 Ql

j (·) .

We could also write the more practical update equation Q̂k+1
j (·) = Q̂k

j (·)+ 1
k+1 (Qk+1

j (·)−Q̂k
j (·)).

It has been shown in [PJ92], for finite dimensional algorithms, that the variance of the residue
decreases like

√
k.

Practitioners acknowledge that the best way to use this method is to begin the averaging when
the iterates have already done a great part of the approximation. Moreover, since the shape of our
iterates in a kernel-based stochastic gradient algorithm is the following:

Qk+1
j (·) =

k∑
i=0

ρi
j∆

i
jK

i
j(x

i
j , ·),

we can rewrite the averaging process in the following way:

Q̂k+1
j (·) =

{
Q̂k

j (·) + ρk
j ∆k

j Kk
j (xk

j , ·) if k < k0

Q̂k
j (·) +

(
kmax−k+1
kmax−k0+1

)
ρk

j ∆k
j Kk

j (xk
j , ·) if k ≥ k0

where k0 denotes the step when we begin the averaging and kmax is the total number of itera-
tions desired.

We show in Figure 4 how averaging reduces the variance of the iterates and smoothes the values
on a simple pricing example presented in the next section. Moreover, one can observe on Figure 2
how this technique accelerates the convergence of the estimates on a simple one-dimensional option
pricing example.

4. Numerical Applications

We here focus on the simulation of price processes driven by Brownian motions (e.g. Black-
Scholes model). Let us consider a general Brownian diffusion:

(15) dXt = µ (t, Xt) dt + σ (t, Xt) dWt,

where µ : [0, T ]× Rd → Rd and σ : [0, T ]× Rd → Rd×d are Lipschitz-continuous vector fields and
Wt is a d-dimensional Brownian motion with correlation matrix Σ.
It is common (see [BPP05]) to discretize (15) using a classical Euler scheme:

Xtj+1 = Xtj
+ µ

(
tj , Xtj

)
(tj+1 − tj) + σ

(
tj , Xtj

) (
Wtj+1 −Wtj

)
, j = 0, . . . , N,

with t0 = 0 < t1 < · · · < tN = T .
It just remains to simulate the Brownian motion increments Wtj+1 −Wtj . We choose to consider
low-discrepancy random sequences, combined with Brownian bridge simulation, in order to get an
equally distributed repartition of the trajectories and to obtain a good representation of the space.
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Figure 2. Convergence of the estimate of the price of an option with our al-
gorithm, enhanced with averaging technique (dash-dotted black line), or without
averaging (solid gray line).

4.1. Brownian bridge and low-discrepancy random sequences. An important factor of ac-
curacy in many methods that aim at estimating conditional expectations is the repartition of the
random values (here the price trajectory). Most of the techniques use Monte Carlo sequences, also
named pseudo-random sequences, because they rely on deterministic procedures. Many implemen-
tations of such sequences are available.
Unfortunately, in a certain sense, none of them draws equitable distributions along the iterations.
Let us precise in what sense and denote by DN the discrepancy of an a priori uniformly distributed
sequence (xi)i=1,...,N on [0, 1]d:

DN = sup
Q rectangle in [0, 1]d

∣∣∣∣number of xi ∈ Q

N
− vol (Q)

∣∣∣∣ .
Thus, for every rectangle Q, its discrepancy is the difference between the relative weight of Q in
the sequence (xi)i=1,...,N and its actual volume (vol

(
[0, 1]d

)
= 1). The discrepancy of a sequence

is just the supremum over all rectangles in [0, 1]d.

Quasi-random sequences are low-discrepancy random sequences. They aim at distributing
equally the numbers along the iterations. Moreover, low-discrepancy random sequences provide
the best convergence speed for the numerical computation of expectations, by Koksma-Hlawka in-
equality ([Nie92], Theorem 2.11). There exist numerous methods of Quasi-Monte Carlo sampling,
see [Nie92] for a survey of these methods.

Because the most information we have is on the last time step (the limit condition in (4)), it
seems reasonable to require a good representation of the state space at this time step. This implies
to draw directly from xt0 the prices xtN

, with quasi-random transitions. But now the problem is:
how to draw xtj

, 0 < j < N , knowing xt0 and xtN
without introducing a bias ?

In the case of Brownian diffusion processes, the Brownian bridge brings the answer. Indeed, one
has the equivalence between the two following drawing procedures for Brownian motions:
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Figure 3. Repartition of pseudo and quasi random sequences, uniformly dis-
tributed on [0, 1]2

• The classical approach: for 1 ≤ j ≤ N , knowing wtj
, draw δwtj

= wtj+1 − wtj
:

δwtj ∼ N (0, (tj+1 − tj) Σ) ,

xtj+1 = xtj
+ µ

(
tj , xtj

)
(tj+1 − tj) + σ

(
tj , xtj

)
δwtj

.

• The Brownian bridge: knowing wt0 , draw wtN
with transition following N (0, (tN − t0) Σ).

Then, knowing wtj+1 and wt0 , compute wtj backwards by drawing

wtj ∼ N
(

wt0 +
j

j + 1
(wtj+1 − wt0),

j (tj+1 − tj)
j + 1

Σ
)

.

Finally, compute xtj with transitions δwtj = wtj+1 − wtj .
The reader may refer to [Dud02], section 12.3, for detailed explanations on the Brownian bridge.

Remark 4.1. The properties listed above are specific to Brownian motions. With Black and Scholes
processes, the price follows a log-normal diffusion and one has to write the Brownian bridge for
log (x).

4.2. Two-dimensional option pricing. We apply algorithm 2.1 to some one and two-dimensional
option pricing problems. Since the algorithm does not depend on any sort of structure in the prob-
lem besides requiring the Markov property of the price process, we can consider any sort of payoff.
Let us consider the following problem:

• Xt and Yt are transfer rates and both follow Black and Scholes diffusions with annual
interest rate r and volatility σ:

dXt = Xt

(
rdt + σdW

(1)
t

)
,

dYt = Yt

(
rdt + σdW

(2)
t

)
,

discretized by a classical Euler scheme on (t0, . . . , tN ). Moreover, we denote ρ the covari-
ance between the Brownian motions W

(1)
t and W

(2)
t .

• The classical intrinsic value of the option on transfer rates at time t is g (t, Xt, Yt) =
e−rt max (0, Xt − Yt),

• the maturity of the option is Tmax,
• we want to estimate the price of the option for all maturities less or equal to Tmax, knowing

the prices at the beginning are X0 = x0 and Y0 = y0.
Results with Tmax = 1 and evenly spaced tj with δt = 1

25 are shown in Figure 4. We choose
σ = 0.2, r = 0.05 annually, x0 = 40.0 and y0 = 36.0, and ρ = 0. Estimates by algorithm 2.1 (on the
left) and by the averaged iterates of algorithm 2.1 (on the right) are compared with the solution
obtained by dynamic programming with a finely discretized state space, which is supposed to be
an accurate estimate of the real solution. As Polyak and Juditsky [PJ92] suggest, we choose the
steps to decrease more slowly than what [BRS05] suggest, as well as the sequence of bandwidths.
With these setups, even though non-avaraged estimates do not seem to converge very well, this
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ensures a good convergence of the averaged estimates.

We draw in Figure 4 the behaviour of
(
Qk

j (x0)
)
0≤j≤N

for averaged and non-averaged iterates,
with k = 500, 1000 and 10000 iterations. One can observe the influence of averaging on the stability
of the algorithm.
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Figure 4. Results of convergence for two-dimensional option pricing. Our algo-
rithm (solid line) compared with finely discretized dynamic programming (dotted
line)

4.3. Statistical comparisons. Since our algorithm has been implemented in the option pricer
Premia1, we can compare statistically our results with numerous known algorithms. Statisti-
cal tests are made on an American put option relying on the minimum of stocks: g(x1, x2) =
e−rt max (0,K −min (x1, x2)), with K the value of the strike.
Both stocks follow a Black-Scholes dynamic, discretized by an Euler scheme. We randomly draw
a large number of experiments, choosing the values of the following inputs uniformly among the
sets specified below:

• Original prices in {50, 55, . . . , 145},
• Volatilities in {0.1, 0.2, . . . , 1},
• Correlation in {0, 0.1, . . . , 0.9},

1More information on this software can be found on the webpage : http://www.premia.fr
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• Annual interest rate in {1, 2, . . . , 10},
• Maturity in {0.5, 0.6, . . . , 1.4},
• Strike in {50, 55, . . . , 145}.

Reference prices and hedging values are computed using the dynamic programming equation (2)
with a finely discretized state space and a large number of Monte Carlo simulations to compute
the expectations. This is a time consuming method but it ensures to have the reference prices and
hedging values.

We then compute the price using our algorithm and draw the boxplots that represent the dis-
tribution of the errors on prices and on deltas.

On Figure 5, one can observe the convergence of our algorithm for nearly every experiment,
drawn with boxplots. In the central box lies half part of the runs, either above or under the box
lies 25% of the runs. The median is represented by a red line.

On Figures 6, 7 and 8, one can observe the errors of our algorithm on the price, the first hedging
value and the second hedging value respectively, when compared with classical pricing methods.

We compute the hedging values with finite differences, but the Markov property of the chain
allows us not to perform the algorithm three times (in dimension 2), but to consider three different
starting points for our price process ((x1, x2), (x1 + δ, x2), (x1, x2 + δ)) and to rotate on them along
with the iterations. With this method, we obtain very accurate approximations of the hedging
values, as one can see on Figures 7 and 8.

We compare our results with the Longstaff-Schwartz (cf [LS01]), Barraquand-Martineau (cf
[BM95]) and Lions-Regnier (cf [BCZ05]) algorithms that are respectively a linear regression method,
a dynamic programming method with state aggregation, and a Malliavin calculus.

For reference, the three methods are implemented in the option pricer Premia and their parameters,
which are the default parmeterers in Premia, are the following:

• The Longstaff-Schwartz algorithm here uses 50000 iterations and a 9-dimensional canonical re-
gression basis.

• The Barraquand-Martineau here uses 20000 iterations, 100 cells and the size of the grid initializing
sample is equal to 300.

• The Lions-Regnier algorithm uses 1000 iterations.

For all the methods, the relative value of the delta increment for the finite difference computation is

equal to 10% and the number of exercise dates is equal to 20. More information is available in the Premia

documentation.
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Figure 5. Error on the price. Performance of our algorithm on a large number
of experiments, drawn with boxplots.
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Figure 6. Error on the price. Performance of our algorithm and others on a
large number of experiments, drawn with boxplots.

4.4. Results on Asian options. Since we prove the convergence of our algorithm with no re-
quirements on the distribution of the underlying price process (except its Markov property), we
can easily use our method on more exotic options.

As an example, we present results on Asian options, whose payoff depends on the average of the
price over a time period. Thus, the value of this option can be written :

(16) J0(x) = max
τ∈T (t0,tN )

E
[
g (τ,Xτ , AX,τ )

∣∣∣Xt0 = x
]
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Figure 7. Error on the first hedging value. Performance of our algorithm and
others on a large number of experiments, drawn with boxplots.
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Figure 8. Error on the second hedging value. Performance of our algorithm and
others on a large number of experiments, drawn with boxplots.

where :

AX,t =
1

t− t0

∫ t

t0

Xsds

is the average of the price process X over the time period [t0, t]. Formally, we consider a single
stock (Xτ , AX,τ ) whose first component is the price and the second is its average. This process is
Markovian, and there are many ways of simulating it. The simpler (and probably poorer) way, if
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we denote by Xt the price process and Ãt its estimated average, is to perform Riemann sums:
ÃX,t0 = Xt0 ,

ÃX,tj+1 =
j · ÃX,tj

+ Xtj+1

j + 1
.

A better way of simulating the average of the stochastic process Xt would be to simulate trajec-
tories with a small discretization on every subset [ti, ti+1], and then to simulate the average using
these points. Another way is to perform a higher accuracy integration scheme, like a trapezoidal
method (see [LT01] for details on the accuracy of these schemes).

With the same validation procedure as for American options, on the particular case of an Asian
call fixed payoff, for which the payoff at time t, with stock Xt and average AX,t is g(t,Xt, AX,t) =
e−rt max (0,K −AX,t), we draw the errors on the price of the option on Figure 9. Actual prices
of the options are between 0 and 100.
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Figure 9. Error on the price of Asian American-type options (reference is a
finely discretized dynamic programming method). Performance of our algorithm
after 50 000 iterations, drawn with boxplots.

5. Conclusion

In this paper we present the application of a kernel-based stochastic gradient algorithm to
American option pricing. Our approach avoids any a priori discretization, besides the usual time
discretization. Thus, it converges toward the optimum of the Bermudean option pricing problem.
After presenting the algorithm, we provide a convergence proof by means of stochastic approxi-
mation schemes. We also present the numerical tools used for accelerating the convergence, and
we compare our method to some classical methods on a two-dimensional American option pricing
problem. It appears that our results are relevant, when compared to other algorithms, especially
for the evaluation of the hedging values. Moreover, since the algorithm only requires the price pro-
cess to be a Markov chain, it is readily applicable to a large class of exotic option pricing problems.

Future research directions include avoiding the time discretization as well, by adding a new
component in the kernels, and applying our algorithm straightforward. Further studies will be
done in this direction in order to describe precisely the assumptions required for this extension.
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