“BINARIZE AND PROJECT” TO GENERATE CUTS FOR GENERAL
MIXED-INTEGER PROGRAMS

JEAN-SEBASTIEN ROY

ABSTRACT. We consider mixed-integer linear programs with arbitrary bounded integer vari-
ables. We first describe a cutting plane approach based on the reformulation of integer variables
into binary variables and describe a practical algorithm to compute these cuts for the original
problem. We use the term “Binarize and Project” to highlight the similarity to the lift-and-
project idea of lifting the problem to a higher dimensional space to generate cutting planes
which are then projected back onto the original space. Indeed, the interest of this approach
lies in taking advantage of cutting plane approaches efficient for mixed-binary problems while
keeping the problem in its non-binary form for improving the efficiency of the branch-and-bound
procedure.

We then propose a new strengthened reformulation into binary variables that answers some
concerns and limitations raised in [OMO2], by ensuring that only one application of the lift-
and-project convexification procedure to the binary reformulation of the problem is required to
obtain a strengthening of the original problem.

Finally, the method is implemented inside the COIN optimization library and a preliminary
experimentation is performed on problems from the MIPLIB library. The computational re-
sults confirm that the use of the proposed binary reformulation and cutting plane generation
procedure leads to an improved integrality gap reduction albeit with an increased computing
time.

1. INTRODUCTION

We consider mixed-integer linear programming problems of the form:

(1) min dzx + ey st. Az+By>c

(z,y)€(SNZ") xXRP
where d € R™", e € RP, A € R?*" B € R1*P, ¢ € R?, ¢ € N* n € N*, p € N* and without loss
of generality, we suppose that the variables x are nonnegative and bounded, i.e., S = [0,b;] x
... % [0,by], with b € N*". We denote P = {(z,y) € S x RP| Ax + By > ¢}, the solution set of
the continuous relaxation of the problem. Elements of P that satisfy the integrity requirements
of problem (1) on x will be called mixed-integer solutions.

In order to reduce the size of the tree generated in a branch-and-cut algorithm, cutting planes are
used to strengthen the continuous relaxation of these problems. One cutting plane approach, the
so-called lift-and-project[BCC93] sequential convexification procedure, consists in calculating the
convex hull of the two polyhedra given by a simple disjunction on any binary variable z;:

conv ({PN{x; =0}}u{Pn{z; =1}})

This step is repeated on the newly calculated polyhedron as many times as desired. In theory,
when all the variables x are binary, this method leads, within a finite number of steps, to the
convex hull of the mixed-integer solutions to the problem (see [BCC93]). In practice, only a few
facets of this polyhedron are generated to strengthen the problem.

Date: October 19, 2006.

2000 Mathematics Subject Classification. Primary 90C57, 65K05.

Key words and phrases. Binary reformulation, Cutting planes generation, Lift-and-project.

The author would like to thanks to Mr Minoux, Mr Porcheron, Mr Cornuéjols, Mr Bonami and an anonymous
referee for their insightful comments.

2 JEAN-SEBASTIEN ROY

On the contrary, when the variables x are general (bounded) integers, the sequential convexification
procedure converges to the convex hull of mixed-integer solutions only in the limit[OMO1], and
this is precisely why is it reasonable to expect improved computational efficiency from the use of
binary reformulations.

Indeed, when the integer variables x are not restricted to binary values but are bounded, it is
possible to reformulate the problem in various ways into an equivalent problem where all integer
variables, denoted z, are 0-1 constrained, leading to problems of the form:

(2) dTlz + ey st. ATz+By>c¢, Dz>0

min
(z,9)€{0,1}™ xR
where T' € R™*™ is a mapping such that z = Tz, and D € R"*? is a constraint matrix involving
the z variables only. Various possible choices for T" and D will be discussed in section 2 below.

While it is possible, after strengthening the relaxation by applying cutting planes, to use branch-
and-bound to solve this transformed mixed-binary problem (2), the discussion found in [OMO02]
strongly suggests that this process may be inefficient. It seems therefore interesting, after ap-
plying cutting plane approaches to the transformed problem (2), to translate back the resulting
inequalities to the initial problem (1) to which branch-and-bound will be hopefully more efficiently
applied.

The main goal of this paper is to propose, for general mixed-integer problems, a method to
perform this translation in practice and thus take advantage of cutting plane algorithms available
and efficient on mixed-binary problems, while still using the branch-and-bound method on the
original problem. For this purpose, we present a suitable reformulation into binary variables
as well as a procedure that generates cuts on the original problem from a strengthening of the
binary reformulation of the problem. The proposed reformulation answers some concerns and
limitations raised in [OMO02], by ensuring that only one application of lift-and-project to the
binary reformulation of the problem is required to obtain a strengthening of the original problem.

We observe here that our approach is similar in spirit to the main idea of lift-and-project, in which
a mixed-binary problem is reformulated in a higher dimensional space where the integrality is
more efficiently expressed in terms of a strengthened polyhedron (the term “Binarize and Project”
suggests this connection). This polyhedron is then projected back onto the original space by finding
inequalities, valid in the higher dimensional space, and at the same time naturally translated
to the original space. In our scheme, the higher dimensional space corresponds to a specific
binary reformulation of a mixed-integer problem on which any type of cut can be used to express
integrality.

Remark that while our goal is to show that the binary reformulation can be used to reduce the
integrality gap for some problems, this improvement comes with a price, namely an increase of
the size of the problems on which cutting plane algorithms must be applied. In this paper, we do
not address the computational efficiency in detail. Some suggestions are provided at the end of
section 6, but this question requires extensive work and should be the subject of further research.

This paper is organized as follows. We present in section 2 the reformulations considered and the
basic results justifying the use of a subset of the inequalities valid for the reformulated problem
to generate inequalities valid for the original problem; we also characterize when strengthening
the reformulated problem will lead to separating inequalities in the original one. A practical
methodology is described in section 3. We then present in section 4 the main result highlighting
the better efficiency of our proposed binary reformulation as compared with other classical binary
reformulations. Two small examples comparing various reformulations into binary variables are
presented in section 5. Computational results obtained from a preliminary implementation of the
cut generation method through binary reformulation, applied to MIPLIB problems, is provided in
section 6. Finally, the concluding section provides some comments concerning the interest of the
proposed approach.

“BINARIZE AND PROJECT” TO GENERATE CUTS FOR GENERAL MIXED-INTEGER PROGRAMS 3

2. BASIS OF THE PROPOSED METHOD

We are looking for the convex hull of the solutions (x,y) € (SNZ") x RP of the mixed-integer
problem (1) with general bounded integer variables z. We describe in this section the proposed
reformulation, discuss the extent to which it yields the expected convex hull, and characterize
when we will be able to generate cutting planes from a binary reformulation of a problem.

Let I = (Z™ x RP) N P denote the solution set of the mixed-integer problem. We want to describe
or at least approximate P’ = conv (I). As the convex hull of a finite number of polyhedra, P’ is a
polyhedron, so 3(A’, B’,¢’) such that P’ = {(z,y) € S x RP| A’x + B'y > ¢'}.

We now reformulate the integer variables x of the polyhedron P to generate an equivalent poly-
hedron Py; for which the integer variables are binary. The following definition encompasses the
class of reformulations we are interested in. A few examples including our suggestion will follow.
Definition 2.1. (Reformulation into binary variables). We consider the reformulation of integer
variables z € S NZ" into binary variables z € {0,1}", m € N, given by the formula z = Tz, with
the constraints Dz > 0, where T' € Z"*™ and D € R"*49. The reformulations must satisfy the
following rules:

(1) Vo € S, 3z € [0,1]™ such that z = Tz and Dz > 0. z is said to be associated with z for
the chosen reformulation.

(2) Vo € SNZ", 3z € {0,1}™ such that z = Tz and Dz > 0. z is said to be canonically
associated with = for the chosen reformulation.

(3) Vz € {0,1}™ such that Dz >0, Tz € SNZ".

Examples of such reformulations! include the compact reformulation proposed by Owen-Mehrotra
in [OMO02]:

Definition 2.2. (Owen-Mehrotra, compact reformulation) Let {; = |logy b;]. We reformulate
the variables z; € {0,...,b;} using z; = Zé’i:o 27 -zl with Vj € {0,...,1;}, 2/ € {0,1} and the
constraints Z;i:O 2.2 < b if Z;‘i:o 27 > b;.

And the reformulation proposed by Sherali-Adams in [SA99]:

Definition 2.3. (Sherali-Adams, non-compact reformulation) We reformulate variables z; €

{0,...,b;} using z; = Z?;lj-zf with Vj € {1,...,b;}, 2/ € {0,1} and the constraints 257:1 2 <
1.

In addition to the above, we suggest an alternative reformulation which will be extensively dis-
cussed in the sequel:

Definition 2.4. (The proposed, strong non-compact reformulation into binary variables) The

suggested reformulation defines for each component x; € {0,...,b;} of z, i € {1,...,n}, a set of
binary variables z] € {0,1} where j € {1,...,b;} such that z; = 2?21 z]. Moreover, this reformu-

lation is strengthened by including a set of constraints on z: Vi € {1,...,n}, Vj € {1,...,b; — 1},
zf > zf + Adding such ordering constraints in this reformulation, while not strictly necessary,
significantly reduces the feasible space for z by breaking the symmetry and eliminating redun-
dant binary representations of some integers, and will improve the efficiency of the cutting plane
algorithms applied to the reformulated problem (see section 4).

We denote z = [z%,...,z{,...,zlfl,z%,...,z{,...,zfln} € [0,1]™ with m = 3" | b;. With each
z € S, we associate z = @ (x) € [0,1]™ such that zf = 1if j < |z], ZZLL;JH = x; — |x;] if
|z;] +1 < b; and z; =0ifj > |z + 1, ie, 2z =[1,...,1,2; — |;],0,...,0,1,...]. Hence
Tz = x. Moreover, we note that € S NZ" if and only if z € {0,1}"". We remark that for this
reformulation, and for all x € SNZ", 2z canonically associated with x (see definition 2.1) is unique
and equal to ¢ ().

LFor all the following reformulations, the structure of matrices T' and D is straightforward.

4 JEAN-SEBASTIEN ROY

Remark 2.5. We will call “weak non-compact reformulation”, the previous reformulation with the
ordering constraints removed, i.e., D = 0.

In the rest of the present section, we consider any reformulation complying with the general
definition 2.1.

Definition 2.6. (Reformulation of a polyhedron) For P = {(z,y) € S x R?| Az + By > c}, we
denote by Py = {(2,9) € [0,1]™ x RP| ATz + By > ¢, Dz > 0} the polyhedron of the constraints
of the problem in the transformed variables space; Iy = (Z™ x RP) N Pyy, the mixed-integer
solution set of the transformed problem and Pj; = conv (Ip1) the convex hull of the mixed-integer
solutions.

Example. Let P = {(21,22,y) € R} |y < 3wy, y < 33, 321 + 322 + 2y < 6}. Note that the
variables x1 and z9 are implicitly upper bounded by 2. Then, for the proposed strong non-compact
reformulation, Py, is defined, for (2%7 22 23 22 y) € {0, 1}4 x Ry, by the following equations :

y < 3(zf+2})

y < 3 (z% + z%)
3(sf+27) +3(23+23)+2y < 6

z% > z%

2 > 22

Let V = {(a,8,7) € R" x R? x R|aTz + By > 7 is an inequality valid for P}, }, the set of the
coefficients of inequalities valid for PJ; such that the coefficients of the variables zf take the form
aT'. These inequalities can be translated into inequalities of the form ax + By > «v defined on the
initial space.

Remark. If the strong non-compact reformulation is used, for each i, the coefficients of the variables
z] for the inequalities in V, are equal for all j = 1,...,b;.

Let C =N, pev {(z,y) €S xRP|ax + By > v}, the intersection of all inequalities translated
in this way. We now formulate the simple result justifying the use of cutting planes belonging to
V to generate cutting planes in the original space.

Proposition 2.7. C = P’, i.e., the inequalities built from the transformed problem define the
convex hull of the mixzed-integer solutions to the initial problem.

Proof. Let us begin by proving that C C P’. Let ax+ 3y > 7 be an inequality valid for P’. We will
prove that it is valid for C' by showing that («, 8,v) € V. By contradiction, suppose («, 5,7) ¢ V.
So, 3(2',y') € In1, aTZ' + By <. Let ' =Tz € SNZ", hence Ax’ + By’ = ATz + By’ > c.
Therefore (2/,y’) € I C P’ and az’ + By’ < v which is inconsistent. Therefore (o, 3,7) € V and
ax + By > vy is valid for C.

Let us now prove that C 2 P’. V(2',y’) € I, let 2’ be the 0-1 solution canonically associated with z’
for the reformulation under consideration, i.e., 2’ € {0,1}" such that T2’ = 2’ and Dz’ > 0. Hence
Ax'+ By = ATZ' + By > ¢, and (2',y') € Ip;. Hence V («, 8,7) € V, ax’ + 8y = aT2'+ By > 7,
and (2/,y’) € C. Finally, I C C and P’ = conv (I) C conv (C) = C. O

Therefore, we have proved that the set V of inequalities valid for the polyhedron P}, of the
form oTz + By > ~v , which can be easily reformulated into inequalities ax + By > v valid for the
polyhedron P’; are sufficient to define P’. We remark that thanks to the lift-and-project sequential
convexification procedure, and contrary to the disjunctions discussed in [OMO1], a description of
the set V of these inequalities can be obtained within a finite number of steps.

We will use the projection result of proposition 2.7 to design a cutting plane algorithm. When
trying to separate a point (z’,y’) from P’, we will reformulate P into Py, strengthen Py using
cutting planes to obtain a polyhedron pm, and try to find an inequality of the form aTz+ By > v
that separates from Py some (2',y') such that 2’ = T2" and Dz’ > 0. The following result helps

“BINARIZE AND PROJECT” TO GENERATE CUTS FOR GENERAL MIXED-INTEGER PROGRAMS 5

characterize when az + 8y > v could be an inequality separating (z’,y’) from P’. Finding such an
inequality when it exists will be the subject of the next section, while ensuring that the conditions
required by the following proposition are met, by means of a specific binary reformulation, will be
the subject of section 4.

Proposition 2.8. Let (z/,y') € S X R? be such that (2',y') ¢ P’, and Py1 the polyhedron Py
strengthened using cutting planes (hence P}, C Py). Let E = {(z,y)|2' =Tz, Dz >0, y = y}.
If EN Py1 = 0, then there exists an inequality of the form oTz + By > v that separates E from
Pyy and the inequality oz + By > ~ separates (x',y') from P'.

Proof. Let P* = {(Tz, y)}(z7y)€p01 denote the projection of Py; onto the original space, and P}

its binary reformulation (see definition 2.6). Assuming E N Py, = 0, (/') ¢ P*, therefore let
azx+ By > v be an inequality separating (', ') from P*. Since P}, C Py, P’ C P* and we deduce
that ax + By > v also separates (2',y’) from P’. Hence, V (2,y) € E, aTz + By = az’ + By’ < 7.
Moreover, YV (z,y) € P}y, (Tz,y) € P* hence aTz + By >~ . Therefore, oTz + Sy > 7 separates
E from Py, and since Py C Py, oIz + By > v separates E from Py U

3. CUT GENERATION THROUGH BINARY REFORMULATION

In this section, we will discuss precisely how to use a binary reformulation to generate cutting
planes. Throughout this section, the discussion is intended to remain general, i.e., to apply to any
binary reformulation complying with definition 2.1. Let (2’,y’) € P be such that (z/,y') ¢ P’.
We assume P’ # () and try to build an inequality separating (z’,y’) from P’.

Let 2’ € [0,1]™ associated with 2’ (see definition 2.1). Then 2’ = T2', and 2’ ¢ {0,1}" because
(2',y') € P and (2/,y') ¢ P’ implies 2’ ¢ Z", and since T € Z"*™, 2/ € {0,1}" would imply
2’ € Z". Hence 2’ € Py and since 2’ ¢ {0,1}", we have 2’ ¢ P},. It is therefore possible to build
valid inequalities separating 2’ from Pj;.

After having generated a number of valid inequalities separating (#/,y") from Py; we add them to
P01 to obtain a new polyhedron Py; such that Py 2 Py D P}, and such that (z/,y") ¢ Pp1. Let
A e RF¥m B e RF¥P and é € R* be such that:

Py Z{(z,y) ERmeP‘Az+Byzé}

In order to obtain an inequality separating (', y’) from P’, we can, for example, solve the following
problem:

3 min U (1212' + By — é) st. ud= vT, up <1
() (u,v)ERE xXR™ Y ; F

(Throughout the end of this paper, u and v are row vectors.)

We remark that this problem is well defined since u is bounded, so the objective function is
bounded too, and u = v = 0 is a solution. This problem consist in finding an inequality valid for
Py asa nonnegative combination u of the inequalities of the system Az + By > ¢ defining Py, by
maximizing the distance between (z’,3’) and the half space defined by the valid inequality, in the

sense of the distance —u (Az’ + By’ — é>7 while ensuring, through the constraint wA = oT, that

the inequality can be reformulated as an inequality valid for P’, that is, if the strong non-compact
reformulation is used, whose coefficients for variables z] are equal for all j. These coefficients
define the coefficients of variables x; for the inequality sought after.

Remark. Multiple formulations of problem (3) can be obtained by either changing the normal-
ization constraint on w or removing the upper bound on u and using as the solution a primal
ray from the now unbounded problem. For simplicity of exposition, we will only consider the L!
normalization constraint.

6 JEAN-SEBASTIEN ROY

Proposition 3.1. Let (u,v) be an optimal solution to problem (3). Then v 4+ uBy > ué is an
inequality valid for P'. Moreover, if u (Az’ + By — é) <0, vz +uBy > ué separates (x',y') from
P.

Proof. Let (z”,y") € I, and 2" canonically associated with z”’. Therefore 2"/ = T'z"” and (2”,y") €
Io1. Since uAz +uBy =vTz+ uBy > uc is a nonnegative combination of the inequalities defining
Py1, it is a valid inequality for Py; and is therefore also valid for P},. Hence vz’ + uBy" =
12" + uéy” > uc as requested.

If u (flz' + By — 6) < 0, v&’ + uBy = vT7 4+ uBy = uAz + uBy < ué and the inequality
vz + uBy > ué separates (2/,y) from P’. O

Algorithm 1 Generation of an inequality separating (z/,y’) from P’ = conv ((Z"™ x RP) N P)
(1) Let (2/,y') € P assumed to be such that (z',y") ¢ P'.
(2) Compute 2’ € [0,1]™ associated with 2’ (2’ ¢ {0,1}"™) (see definition 2.1).
(3) Compute one or more cuts separating z’ from PJ;. By combining them with Py1, we obtain
Py = {(z,y) € R™ x RP ’flz+§y > é}
(4) Solve the cut projection problem (3) and let (u,v) be an optimal solution to it:

3 min U (Az' + By — é) st. ud= uT, up <1
() (u,v)ERE xR Y ; k=

(5) If u (Az’ + By — é) < 0 then, vz 4+ uBy > ué is valid for P’ and separates (',y') from
P

Algorithm 1 summarizes the procedure.

Remark. In algorithm 1, u (Az’ + By’ — é) is not always strictly negative. For example, as de-

tailed in [OMO02], if either the compact reformulation of Owen-Mehrotra or the non-compact re-
formulation of Sherali-Adams is used on some polyhedra, performing disjunctions on some binary
variables may lead to a strictly smaller polyhedron which nevertheless, once projected back to the
original space, is identical to the original polyhedron. Section 5 provides two such examples. In

these cases, (z/,y’) belongs to the projected polyhedron, and therefore u (Az’ + By — é) =0.

Nevertheless, we will show in section 4 that for the strong non-compact reformulation, and under
appropriate assumptions, the procedure always generates a separating hyperplane.

The following result characterizes the cases where the inequality generated will be separating.

Proposition 3.2. Let E = {(z,y)|2' =Tz, Dz >0,y =y}. The generated inequality vr +
uBy > ué separates (z',y’) from P’ if and only if E N Py = 0.

Proof. Suppose that the inequality vz + uBy > ué separates (2',y’) from P’ then Vz such that
2 =Tz, v’ + uBy = vTz+uBy = uAz +uBy < ué. Moreover, u (Az + By — é) > 0, being a
noAnnegative combination of the inegualities defining]501, is an inequality valid for Py Therefore,
uAz +uBy' < ué implies (z,y") ¢ Po1.

Conversely, from proposition 2.8, there exists an inequality of the form oTz + By >
separates E from Py;. Therefore it exists u* € Rﬁ, u* # 0, such that (a7, 5,7) = u* (A, B, é)
Let =3, uf, v =% and v' = &: («/,0') € RE x R", 3", uf <1, WA= %A = ol — T

u’ (/Lz’ + By — é) = % < 0. We conclude using proposition 3.1. O

“BINARIZE AND PROJECT” TO GENERATE CUTS FOR GENERAL MIXED-INTEGER PROGRAMS 7

In optimization problems such as (1), the cutting plane generation algorithm will generally be
decomposed in two phases. First the binary expansion Fp; is generated and strengthened using
cutting plane approaches. Then the cutting plane projection problem (3) is repeatedly solved to
generate cutting planes to strengthen the relaxation in the original space until the optimum of
this relaxation cannot be cut off. Let again Py1 denote the polyhedron obtained after applying
valid inequalities to Py; and

4 min dr+e st. Az + By > ¢
() (z,y)ESXRP 4 y=

the continuous relaxation of problem (1). Ideally, we would like to project Py1 onto the original
space but this would too computationally expensive. As an alternative, we project part of the
inequalities defining it and use them to strengthen the polyhedron P. We project as many inequal-
ities as needed to ensure that the optimum over the strengthened P belongs to the projection of

Py1. Therefore, upon termination, both the strengthened original and strengthened reformulated
problems will have the same optimal value.

More precisely, we try to separate the optimum of the continuous relaxation (4), using a cutting
plane generated by solving the cut projection problem (3). If a separating inequality is generated,
it is added to the constraints of the continuous relaxation. The procedure is repeated until no
separating inequality is generated. Algorithm 2 describes the proposed cutting plane generation
procedure in a mixed-integer linear programming optimization context.

If the inequalities generated by solving problem (3) are facets of the projection of Py by T (which
is ensured by a proper normalization constraint, see for instance [BCC93, Bon03]), then algorithm
2 terminates after a finite number of steps.

Algorithm 2 Cut generation in a MILP optimization context

(1) Strengthen Py, using cutting planes to obtain a polyhedron Py;. Usually, Py, is strength-
ened by repeatedly adding cutting planes separating the optimum of the objective function
dTz + ey over it from Pj;.

(2) Let (2',y") € P be an optimum solution to the continuous relaxation (4).

(3) Compute 2’ € [0,1]™ associated with ’ (2’ ¢ {0,1}") (see definition 2.1).

(4) Solve the cut projection problem (3) and let (u,v) be an optimal solution to it:

(u,v)ERE xR

(3) min u (/Lz' + By — é) st. uA =0T, Z up < 1
k

(5) Ifu (Az' + By — é) =0, the algorithm terminates.

(6) Strengthen P using the inequality vx+uBy > ué valid for P/, and go to step 2. In practice,
only the cuts that are tight at the optimum of the strengthened P are kept, which does
not deteriorate the value of strengthened relaxation.

4. USING THE STRONG NON-COMPACT REFORMULATION IN BINARY VARIABLES

In this section we show how the choice of a specific reformulation can provide a decisive advantage
to the practical application of the method as compared with other binary reformulations. We
will show that contrary to the general case, when using the strong non-compact reformulation
(see definition 2.4), algorithm 1 always generates a separating cutting plane, which makes this
algorithm potentially interesting in practice. As shown in the next section on a few examples, this
property is not shared by the other suggested binary reformulations.

Let (2/,y") be a vertex of P such that (z/,y') ¢ P’. Similarly to the previous section, we try to
build an inequality valid for P’ separating (z’,y’) from P’.

8 JEAN-SEBASTIEN ROY

Proposition 4.1. Assume that the binary reformulation used is the strong non-compact reformu-
lation (definition 2.4), and the point (x',y") to separate is a vertex of P. Then if the cutting plane
method used is lift-and-project applied to a fractional component of z' = ¢ (a') (definition 2.4),
the cutting plane generated by algorithm 1 separates (z',y') from P’.

Proof. Let 2’ € [0,1]™ such that 2’ = ¢ (2'). Since 2’ ¢ Z", 3i’ such that z, ¢ Z. Let j' = |z |+1,
therefore 2’7, ¢ {0,1}. Then, we apply the lift-and-project convexification procedure to variable

zg,l of polyhedron Fy;, and obtain a new polyhedron denoted Py1 as before:
Py, = conv ({P()l N { = O}} {Pm N { = 1}}) = {(z,y) c R™ x RP Az—l—By > é}

Let E = {(z,y)|a' =Tz Dz=0,y =y} and P* = {(T'%,9)}, ,)ep, » the projection of Py
through T. We will prove that (z’,y’) ¢ P*, which implies that E N Py = 0.

Let (xz,y) € P*. 3(z,y) € Py, such that * = Tz. Since Py C Poi, (z,y) € Py therefore
ATz+ By = Ax+ By > c and (x,y) € P. Thus P* C P. By contradiction, suppose (z’,y') € P*.
Since (2',4y') is a vertex of P and (2/,y’) € P*, (¢/,y') is a vertex of P*.

From the definition of Ppy;, we deduce Y (z,y) € Py, 3 (z0,Y0) € {P01 N {z , = 0}} and (z1,y1) €

{Pm N {z = 1}} and A € [0,1], such that (z,¥) = A(z0,y0) + (1 — X) (21,¥1). In particular,

V(z,y) € Py such that (T'z,y) = («/,y), (therefore y = /), let 29 = Tz and z; = Tz. We
therefore have (zg,y0) € P* and (z1,y1) € P*. Hence, A(zo,y0) + (1 —A) (x1,91) = (Tz,y') =
(2',y") € P*. Since (2/,y) is a vertex of P*, A € {0,1}, and 2’ = x¢ or 2’ = z1.

Suppose &' = xg. Since (29, y0) € {Pm N { /= 0}}, using the ordering constraints on variables

zf in the strong non- compact reformulation, which are therefore verified in Py C Pos, in one hand
Vj >3’ 2 =0 < 2, and in another hand, since z” =1,Vj <j, ” =1> 201 Finally,
2, >0 = ZO,i" Therefore, zo» = (T'20), = Zg 1201 <j-1< Z] L2 = (T2, =7, so
x' # w9, which is inconsistent. Similarly if we suppose 2’ = 1, we show show that 1 ;+ > j' > a,

which is also inconsistent. Therefore (z',y') ¢ P*, EN Py =) and we conclude using proposition
3.2. O

It thus follows from the above proposition 4.1 that when our proposed strong non-compact refor-
mulation is used, and when we are looking to separate a vertex of P not belonging to P’, only
one application of the lift-and-project convexification procedure to the binary reformulation of the
polyhedron (see definition 2.6) is required to obtain a valid inequality separating the chosen vertex
of P from P’. As illustrated in the next section through examples, this property is a key advantage
of the strong non-compact reformulation, and is not shared by the other suggested reformulations
(definitions 2.2 and 2.3). To a large extent, this property alleviates one of the main criticisms of
the idea of using binary reformulations stated in [OMO02], namely that the lift-and-project convex-
ification procedure must be applied multiple times in sequence before obtaining a valid inequality
separating the chosen vertex of P from P’.

Remark 4.2. We remark that, when using the strong non- compact reformulation, applying the
hft and- prOJect convexification procedure once to variable 27, i.e., considering the disjunction:

! = 0 or 2] = 1, corresponds to the disjunction z; < j — 1 or x; > j on variable z; described
by Owen and Mehrotra in [OMO1]. The sequential application of such disjunctions on z cannot
systematically permit to obtain the convex hull P’ of integer points of P in a finite number of
steps: the disjunctions must be performed simultaneously to achieve this goal. On the contrary,
the sequential application of the lift-and-project procedure to all variables of Py, leads, after
projection, to valid inequalities defining P’ (see proposition 2.7). Naturally, a more realistic
sequential application of the lift-and-project procedure to a few binary variables before projecting,
produces an intermediate result.

“BINARIZE AND PROJECT” TO GENERATE CUTS FOR GENERAL MIXED-INTEGER PROGRAMS 9

As an illustration, let L be a sequence of pairs (ik,jk)ke{l K} with i € {1,...,n} and j; €
{1,...,b;}, describing disjunctions of the form z;, < j —1 or x;, > ji. Let

P*=conv | () ({(z,y) € Plz; <j—1}U{(x,y) € Plz; > j})
(i,9)€L
denote the polyhedron obtained by performing all these disjunctions simultaneously on P. In
one hand, P* can be described with approximately 2% times more constraints and variables than
P, which is often intractable. On the other hand, while P* cannot be obtained by applying
the disjunctions sequentially, it can be obtained using the strong non-compact reformulation,
sequential lift-and-project and projection. More precisely, let Py; be the strong non-compact

reformulation of P. Let us sequentially apply lift-and-project to variables zf , for (i,j) € L. Let

Qo = FPo1 and
Vke{l,...,K}, Qr = conv ({(z,y) €Qr 1| :0}U{(z,y) €Qr 1|z = 1})

In accordance with the beginning of this remark, the projection of @k onto the original space is
P*. In the context of cutting plane generation (using problem (3) to perform the projection, and
only generating a few facets of the polyhedra involved), this formulation might be more tractable.

5. COMPARISON OF THE STRONG NON-COMPACT REFORMULATION AGAINST OTHER BINARY
REFORMULATIONS

In this section, we compare the strong non-compact reformulation to other classical reformulations
introduced in section 2. On two examples, we show how cutting plane generation through refor-
mulation progressively yields the convex hull of mixed-integer solutions, notably in a case where
mixed-integer Gomory cuts fail to do so.

5.1. First example. We consider here the following example due to Cook, Kannan and Schri-
jver[CKS90]:

Let P be the polyhedron in variables (z1, z2,y) € Ri defined by the constraints:
P = {(z1,22,y) € R} |y < 3a1, y < 3wg, 321 4 325 + 2y < 6}
Note that the variables z; and x5 are implicitly upper bounded by 2.

We are looking for the convex hull P’ of points I such that x; and wxs are integers, i.e., [=
(z> x R) N P and P’ = conv 1.

The vertices of polyhedron P (see figure 1) are the points:

(21, 22,9) € {(0,0,0), (2,0,0), (0,2,0), (5,5,3)}
The vertices of polyhedron P’ (see figure 1) are the points:

(«Tlax%y) € {(07070)a (27070)’ (07270)}

5.1.1. Methodology. To obtain P’, a first approach would be to apply cutting plane methods such
as mixed-integer Gomory cuts. It can be shown that it is not possible to obtain the convex hull
P’ through the application of a finite number of mixed-integer Gomory cuts (see [CKS90]).

Alternatively, it is possible to reformulate integer variables x; and s into binary variables in
order to obtain a polyhedron Py; such that the convex hull of its integer points can be obtained
by applying a finite number of lift-and-project cuts. We then obtain the polyhedron P’ through a
projection.

We will apply this method with various binary reformulations, including the strong non-compact
one proposed here. For each of these reformulations, we will apply the lift-and-project convexifi-
cation procedure (see section 1) to some or all of the variables, and then project the polyhedron
onto the original space. We will describe the polyhedra by listing their vertices. In the case of

10 JEAN-SEBASTIEN ROY

e

P* P

FIGURE 1. Polyhedra P, P’, P* and P**, in cubes 2 units wide

the application of the lift-and-project convexification over all the variables, the result will system-
atically be P’ (see section 2). We are therefore interested in applying it on a limited subset of
the variables. We remark that the result of the sequential convexification does not depend on the
order of application on the variables (see for example proposition 4 in [OMO02]).

Let P* = conv ({(O, 0,0), (2,0,0), (0,2,0), (1, %, 1)})

and P** = conv ({(0,0,0), (2,0,0), (0,2,0), (3,1,1)}) (see figure 1).

5.1.2. Compact reformulation (Owen-Mehrotra). In the case of the compact reformulation (see
definition 2.2), a disjunction on a variable zf zf =0or zf = 1, corresponds to a disjunction on
a variable z;: x; < 277l or a; > 27 if j = {; and x; < by, or z; > 27 if not, which is obviously
not very interesting if j # [;. We observe here the behavior described by Owen and Mehrotra in
[OMO02]. In the following, we list the variables on which the disjunction-convexification procedure
is applied, followed by an arrow (—) and the polyhedron obtained after projection.

For example, [20,2{] — P* means that the polyhedron P was reformulated using the compact
reformulation into a polyhedron Py;. Disjunctions on the variables 29 and z; are applied on Py; and
lead to a new polyhedron Py, i.e., let Q = conv ({(z, y) € Py ’z(l) = O} U {(z,y) € Py ’z? =1 }),
then Py = conv ({(z,y) €Qlz = 0} U {(Z,y) eqQ ‘z% =1 }) As observed earlier, the resulting
polyhedron does not depend on the order according to which the disjunctions are considered.
Similarly, applying the disjunctions sequentially or simultaneously lead to the same result. The

“BINARIZE AND PROJECT” TO GENERATE CUTS FOR GENERAL MIXED-INTEGER PROGRAMS 11

resulting polyhedron Py is then projected back to the original (z1,z2) space, and in this case,
this projection leads to P* as defined above.

Examining all possible simple disjunctions on variables zf , we obtain:
(1] = Py [2] = P
[z?,zl] — P, [21,22] — P, [21,22] — P, [Zuzz] — P, [21,22] — P

[z?,zl,zz} — P*, [zl,zl,zﬂ — P, [zl,zg,zQ] P, [zl,zg,z2] — P
and obviously [29, 21,29, 23] — P'.

It is therefore not possible to obtain P’ without applying lift-and-project on all binary variables.
Moreover, as written in [OMO02], to get any reduction of P, the application of lift-and-project
must be carried out, before projection, with respect to all the binary variables zi associated with
a given variable x;.

5.1.3. Sherali-Adams non-compact reformulation. In the case of the Sherali-Adams non-compact
reformulation (see definition 2.3), a disjunction on variable z/: z/ =0 or 2] = 1, corresponds to a
disjunction on variable x;: x; < b; — 1 or x; = b; if j = b; and x; < b; or x; = j otherwise, which
is obviously not very interesting if j = b;.

[ZH — P, [Z%] — P
[z%,zl] — P, [21,22] — P, [21,22] — P, [zl,zz] — P, [21,22] — P
[21,21,22} — P*, [zl,zl,zQ] — P*, [21,z2,z2] P, [zl,z2,z2] — P**.

We observe here the same behavior as with the compact reformulation as these are more or less
the same reformulations in our case.

5.1.4. Weak non-compact reformulation. In the case of the weak non-compact reformulation (see
definition 2.5), a disjunction on variable z/: z/ = 0 or z/ = 1, corresponds to a disjunction on
variable z;: z; < b;—1 or x; > 1, which does not depend on j and is obviously not very interesting.

[zﬂ — P, [z%] — P
[zl,zl] — P*, [zl,zz] — P, [zl,z2] — P, [zl,z2] — P, |:Z1,Z2] — P
(21,22, 28] — P*, [21,22,23] — P*, [2,23,23] — P**, [}, 23,23] — P**.

We observe here the same behavior as with the Sherali-Adams reformulation.

5.1.5. Strong non-compact reformulation. As explained in section 4, in the case of the strong
non-compact reformulation (see definition 2.4), a disjunction on variable 2] zf =0 or zj =1,
corresponds to a disjunction on variable x;: z; < j — 1 or x; > j, Wthh corresponds to the

disjunctions described by Owen and Mehrotra in [OMO1].

[21] = P, 2] = P

[z%7z1] — P*, [z%7z%] — P, [21,22] — P*, [zl,zz] P*, [zl,zz] — P

[2%72%722} - Pl [21a2%522] - P* [21325722} - Pl [2’1,221,25] — P

We remark that in the practical case of linear programming, since the only vertex with fractional
components is vertex (%, 5 5) lift-and-project would be applied to variable z{ (or symmetrically
23). Afterwards, by projecting the vertices of the polyhedron obtained and by keeping only those
not in I, the only remaining vertex is (17 3) Thus, lift-and-project would be applied to variable
za. We would therefore obtain P’ after two convexification steps only.

12 JEAN-SEBASTIEN ROY

5.1.6. Remark on disjunctions applied to integer variables. As explained in remark 4.2, the se-
quential application of the lift-and-project procedure to the polyhedron Py provides a better
strengthening than the sequential application of the disjunctions proposed by Owen and Mehro-
tra. As an illustration, on our example, four disjunctions are possible: (z1 <0) V (21 > 1),
(r1 <1)V (z1 > 2), and similarly for z5. The sequential application of these four disjunctions,
whatever the order, repeated any number of times, does not lead to the convex hull of mixed-
integer solutions to the problem. On the contrary, the sequential application of the disjunctions

of the form zf = O) \Y zf = 1) in the binary reformulation corresponds to the simultaneous ap-
plication of the disjunctions (z; < j — 1) V (z; > j) in the original space, which naturally lead to
the convex hull of the mixed-integer solutions to the problem. I.e., in our case,
P = COHV[({(.ﬁl,J)Q,y) epP ‘xl < 0} U {(m1,x2,y) S |1‘1 2 1})
N ({(z1,22,y) € Plza <0} U{(21,22,y) € Plas > 1})]

Whereas, let I1[-] denote the projection onto the original space, and let:

Q = conv ({(z,9) € Por |21 =0} U {(2,9) € Por |21 = 1})
Then:
P =Tl [conv ({(z,) €Q |z =0} U{(2,9) € Q|23 =1})]

5.2. Second example. This second example is the one discussed in [OMO02].

We are interested in building the convex hull P’ of the integer points of the polyhedron P =
T1,%o € [0,4]2‘ 3x1 4 dxo < 20, by + 32 < 20}. The case of the compact reformulation is de-

tailed in [OMO02]. The authors show that, firstly, lift-and-project must be applied on all 6 binary
variables of the reformulation to obtain P’, and secondly that it is necessary to apply it to at least
three binary variables to obtain a polyhedron whose projection into the original space is smaller
than P.

In the case of the strong non-compact reformulation (see 5.1.5), the application of the lift-and-
project procedure to the various variables results in the following polyhedra (we apply each time
lift-and-project on a vertex of the polyhedron such that its projection into the initial space does
not satisfy integrality constraints):

Let: S’ ={(0,0), (4,0), (4,0)}. We have P’ = conv (S5").
—conv (S"U{(3,8), (2.%)})

23] = conv (S"U{(5, 1), (25)})

24, 2] = conv (S"U{(2, %) })

[3

[

[+

[21, 23, 21, 23] — conv (S"U{(3,3)})
[+

K

—

21

=W

z

z

2 23, 21, 23, 2] = conv (STU{(L F)})

z) Z%? Zzll’ 237 Z%’ Z%:I - P/

We observe (see figure 2) that while, to obtain P’; it is necessary to apply the method to as many
variables as in the compact reformulation case, each application leads to a projection nearer to
the convex hull than the previous one, which was not the case with the compact reformulation.
Therefore, in accordance with the methodology described in section 4, it is possible to stop at
any stage of the application of lift-and-project on the binary variables and go back to the initial
formulation while still taking advantage of a strengthening not necessarily obtainable by applying
existing methods (such as mixed-integer Gomory cuts) on the initial polyhedron.

“BINARIZE AND PROJECT” TO GENERATE CUTS FOR GENERAL MIXED-INTEGER PROGRAMS 13

/

Initial polyhedron P After one cut After two cuts

/

After three cuts After four cuts After five cuts

~

After six cuts: P’

FIGURE 2. All stages of the application of the method on the example from [OMO02]

5.2.1. Remark on disjunctions applied to integer variables. The remarks of subsection 5.1.6 also
apply here. For example, the disjunction on 2z} is equivalent to the disjunction (z; <2) V
(1 > 3); the sequential disjunctions on 23 then 23 are equivalent to the simultaneous disjunctions
(1 <2)V (x1 > 3) and (22 < 1) V (22 > 2); while the sequential disjunctions (z; < 2)V (z1 > 3)
then (zo < 1)V (z2 > 2) lead to a larger polyhedron conv (S’ U {(%,1) , (%,) , (2, 15—4)}) as
illustrated on figure 3.

Simultaneous disjunctions Sequential disjunctions

F1GURE 3. Difference between the simultaneous and sequential application of
disjunctions (x; <2)V (x1 > 3) and (x2 < 1)V (x2 > 2) on P.

14 JEAN-SEBASTIEN ROY

Again, the better efficiency of the sequential disjunctions applied to the binary reformulation
comes from the property that sequential disjunctions on mixed-binary problems are equivalent to
simultaneous disjunctions, which is not the case for general mixed-integer problems.

6. PRACTICAL EXPERIMENTS

6.1. Implementation in COIN/Cgl. We have implemented the proposed cut generation through
strong non-compact binary reformulation as a cut generation method for the Cgl library of
COIN[LHBD™01]. This implementation corresponds to the reformulation into binary variables,

then the repeated application of cut generation methods to the resulting mixed-binary problem

and the application of algorithm 2 to generate inequalities valid for the original problem. Algo-

rithm 3 provides details on the procedure implemented while algorithm 4 provides details on the

lift-and-project procedure used by algorithm 3.

Algorithm 3 Implementation of the cut generation using binary reformulation

(1) Let (x0,y0) be an optimal vertex of the continuous relaxation of problem (1), and vy its
value. We suppose that xy has at least one fractional component.

(2) Reformulate into binary variables the integer variables of the problem to obtain a problem
such as:

(5) min _ dTz+ey st. Az+By>é
(z,y) ER™ XRP

(3) Let zp associated with xg.

(4) (Cut generation on the transformed problem.)
(a) Initialization: ¢ « 0
(b) Apply lift-and-project to separate (z;,y;) (i.e., algorithm 4 below with 2’ = z; and

y' = ;). Strengthen the polyhedron Py = {(z,y) ER™ x RP |Az + By > é} by

modifying matrices fl, E, and vector ¢ using the generated cuts.

(c) i—i+1

(d) If cuts have been generated, compute an optimal vertex of the modified problem (5).
Let (z;,y;) be the vertex and v; the optimal value.

(e) As long as z; has at least one fractional component, that cuts have been gener-
ated during this step, and that v; has sufficiently decreased relatively to v;_1, i.e.,
|vi1 — v;] <0.001 x (Jv;| + 1), and/or that the maximum number of rounds has not
been exceeded, go back to step 4b.

(5) The cuts generated so far where used to strengthen Py; into Py;. To finally generate
cuts to strengthen P, using the strengthened reformulation]501, apply algorithm 2 on
polyhedron Py, starting from step 2, with 2’ = zo and v/ = yo.

At this stage, some implementation problems remain unsolved and left for future research. No-
tably, when the integer variables are unbounded, a preliminary computation of implied bounds is
necessary, and even when bounds are known, if the allowed range of integer variables is very large,
the number of binary variables in the reformulation may be too large to be handled easily. A few
suggestions regarding the computational efficiency are given at the end of this section.

6.2. Application to MIPLIB problems using a lift-and-project cut generator. We have
applied the methodology described above to MIPLIB[BCMS96] problems for which at least one
integer variable is not binary. These problems have already been studied in the context of refor-
mulation into binary variables in [OMO02].

We have compared the reduction of the integrality gap obtained through the use of a lift-and-
project cut generator on either the original problem or on its strong non-compact reformulation.
Lift-and-project is used in the comparison since it is the only cutting plane approach for which
we can guarantee the generation of separating inequalities using the proposed procedure (see

“BINARIZE AND PROJECT” TO GENERATE CUTS FOR GENERAL MIXED-INTEGER PROGRAMS 15

Algorithm 4 One round of lift-and-project cut generation

(1) Let (2',y") an optimal vertex of Pp; to be separated from Pj;. We suppose that z’ has at
least one fractional component. Let J = {i € 1,...,m|z] ¢ {0,1}}, i.e., the set of indices
of binary variables that are fractional at the optimal vertex considered.

(2) Forallie J:

(a) Consider the problem min(, g) oz’ + By — v subject to az 4 By > ~ is valid for
conv ({(z,y) € Po1]2: =0} U{(2,y) € Po1|2: =1}). See for example [BCCI3] for a
practical formulation.

(b) If the minimum of this problem is 0, then no cut is generated. Otherwise, the problem
is unbounded. Let («, 3,7) be an unbounded ray. Then az+8y > -y is a cut separating
(',y') from Pf;.

(3) Return the list of cuts generated during the previous step. Remark that Pp; is kept
unchanged during the course of step 2. All the cuts generated by the above procedure are
applied to Py; upon termination of this step.

proposition 4.1). In both cases, 5 rounds of sequential lift-and-project cut generation are applied
to all fractional binary variables. I.e., algorithm 4 is applied to an optimum vertex of a polyhedron
Ppy1; the generated cuts are added to Pyy; an optimal vertex of the new polyhedron is obtained; then
algorithm 4 is applied again, and so on, five times successively. In the binary reformulation case,
the resulting cuts are then projected using the algorithm 2. The problem noswot has been omitted
since it does not present any integrality gap. Table 1 presents the characteristics of the problems
in terms of number of continuous, binary and general integer variables, as well as the number of
binary variables added by the reformulation of general integer variables. In this implementation,
we choose to avoid reformulating general integer variables whose definition interval is larger than
500. Such variables would create a considerable number of binary variables (32000 in the case of
bell3a and 94600 in the case of bell5), which should be better handled by either reformulating
a subset of the definition interval, or some implied bounds computation to reduce the definition
interval. Moreover, it seems intuitively that in most problems, given the finite precision of the
computational tools involved, integer variables with large definition intervals behave quite similarly
to continuous variables.

Variables
General Integer
Problem | Continuous | Binary | General Integer | reformulated as binary
arki001 850 442 96 608
bell3a 62 39 32 0
bells 46 30 28 600
blend2 89 239 25 66
flugpl 7 0 11 198
gen 720 144 6 144
gesa2 816 240 168 432
gesa2_o 504 384 336 864
gesa3 768 216 168 504
gesa3_o 480 336 336 1008
gt2 0 24 164 1148
qnetl 124 1288 129 675
gnetl_o 124 1288 129 675
rout 241 300 15 30

TABLE 1. Number of continuous, binary, general integer non binary variables of
MIPLIB 3.0 problems, as well as the number of binary variables added by the
reformulation of the general integer variables.

16 JEAN-SEBASTIEN ROY

Since no suitable lift-and-project cutting plane generator is available in Cgl, we developed our own
implementation. This implementation is not optimized so that the only significant performance
measurement is the reduction of the integrality gap at the root node of the problem. [BP03]
provide the basis for a much more efficient, but highly complex implementation, suitable for
branch-and-cut.

Table 2 presents the results. LP value corresponds to the value of the continuous relaxation ; MIP
value to the optimal value (or in the case of arki001, the best integer value known) ; L&P value
to the value of the relaxation after applying lift-and-project (5 rounds) ; B&P value to the value of
the relaxation after applying lift-and-project (5 rounds) to the strong non-compact reformulation
(i.e., the result of algorithm 3). Finally, the improvement corresponds to the difference in value
between the two methods expressed as a percentage of the integrality gap that remains to be closed
after applying lift-and-project to the original problem, i.e.,]]3\/[8;5 ;’gll;‘::fgg :gllgf Three problems
exhibit no or a small improvement, all other problems exhibit significant improvements.

’ Problem ‘ LP value ‘ MIP value ‘ L&P value ‘ B&P value ‘ Improvement (%) ‘

arkioo1 | 7579599.8 | 7580813* | 7579599.8 | 867726.15 18.7
bell3a | 862578.64 | 878430.32 | 867726.15 | 867726.13 0
bells | 8608417.9 | 8966406.5 | 8906426.9 | 8906662.9 0.4
blend2 | 6.9156751 | 7.598985 | 7.1681526 | 7.2577345 20.8
flugpl | 1167185.7 | 1201500 | 1167185.7 | 1171670 13.1

gen 112130.04 | 112313 112248.4 | 112251.02 4.1
gesa2 | 25476490 | 25779856 | 25591179 | 25637000 24.3

gesa2_o | 25476490 | 25779856 | 25591200 | 25681342 47.8
gesa3 | 27833632 | 27991043 | 27851253 | 27982605 94.0

gesa3_o | 27833632 | 27991043 | 27851253 | 27982741 94.1

gt2 13460.233 21166 13460.233 | 20603.861 92.7
qnetl | 14274.103 | 16029.693 | 14458.939 | 14993.899 34.1
qneti_o | 12095.572 | 16029.693 | 12095.572 | 14824.597 69.4
rout | 981.86429 | 1077.56 996.478 | 1003.6282 8.8

TABLE 2. Comparison of the strengthened relaxation value, between L&P and
B&P, using 5 rounds of lift-and-project on the MIPLIB 3.0 problems

Table 3 presents the number of cuts generated by each method that are tight at the optimum of the
strengthened relaxation. We observe that, given the projection performed after the cut generation
on the binary expanded space, the number of cuts kept in the original space is comparable with
the number of cuts generated without reformulation.

Finally, table 4 presents the computing times of each method obtained on a 1280 MHz Sun Ul-
traSPARC III, using CPLEX 9.0 as the underlying linear solver. We observe that, the computing
times are most of the time significantly higher for B&P than for L&P, which is a consequence of the
much larger programs generated by the reformulation in our preliminary implementation. Never-
theless, we believe these computing times are not representative of a real-world implementation.
Indeed, many methods can be devised to improve the numerical efficiency:

(1) Sophisticated implementations of lift-and-project[BCC93, BCC96] ignore all variables that
are at a bound in the continuous relaxation solution, greatly reducing the cutting plane
generation problem size. In our case, the solution to the reformulated problem associ-
ated (see definition 2.4) with the optimal solution to the continuous relaxation will have
the same number of fractional variables as the the optimal solution to the continuous
relaxation. The cutting plane generation problem will therefore initially be of the same
size as without reformulation. Subsequent rounds of lift-and-project do not share this
property, and the number of fractional variables will increase: care should be taken to en-
sure the optimal solutions of the strengthened continuous relaxation of the reformulated

“BINARIZE AND PROJECT” TO GENERATE CUTS FOR GENERAL MIXED-INTEGER PROGRAMS 17

Problem ‘ Improvement (%) ‘ L&P cuts ‘ B&P cuts ‘

arki001 18.7 58 65
bell3a 0 10 8
bell5 0.4 13 6
blend2 20.8 15 7
flugpl 13.1 0 7
gen 4.1 64 33
gesa2 24.3 54 79
gesa2_o 47.8 65 90
gesa3 94.0 34 87
gesa3_o 94.1 30 86
gt2 92.7 0 14
gnetl 34.1 30 25
gnetl_o 69.4 0 31
rout 8.8 37 38

TABLE 3. Comparison of the number of cuts tight at the optimum of the strength-
ened relaxation, between L&P and B&P, using 5 rounds of lift-and-project on the
MIPLIB 3.0 problems (column “Improvement” reproduced from table 2)

problem are chosen among the many possible equivalent ones as having as much binary
variables at bounds as possible, for example by introducing a bias in the objective such
as €y Z?":l jzf , for € small enough or by solving an additional small optimization
problem. Le., let (2/,y) an optimal solution to the strengthened continuous relaxation
of the reformulated problem. Before performing another lift-and-project round, we might
want to choose another solution (z,y) that minimize >, Z;’:l J zf subject to the cutting
planes generated so far, and the constraint Tz = T2'.

(2) Only a subset of the general integer variables could be reformulated, and, for variables
with large definition intervals, only a subset of the definition interval, around the solution
to the continuous relaxation, could be reformulated.

(3) And finally, computing times would be significantly reduced and probably also much less
impacted by the problem size increase induced by the reformulation, if an efficient lift-
and-project implementation, such as the one described in [BP03] was used?.

To conclude this experimentation, the use of the proposed cut generation procedure, while com-
putationally heavy, avoids applying branch-and-bound to the binary problem, and does not lead
to larger programs. On the contrary, as observed in [OMO02], the use of binary reformulation alone
creates a considerable amount of variables negatively impacting the time required to solve the
problem.

This limited experiment demonstrates the ability to take advantage of cutting plane approaches
dedicated to binary problems, such as lift-and-project, in the context of general integer variables.
Nevertheless, much work remains to create an efficient implementation of this technique.

7. CONCLUSION

We have proposed a practical approach of cut generation through binary expansion using a spe-
cific reformulation into binary variables, called here the “strong non-compact reformulation”, that
answers some theoretical concerns and limitations raised in [OMO02], namely the necessity to apply
the lift-and-project convexification procedure to all binary variables associated with an integer
variable before obtaining a strengthening of the original problem, a concern answered by proposi-
tion 4.1. Also, instead of applying branch-and-bound to the binary reformulation of the problem

2No such implementation is currently available to the author.

18

JEAN-SEBASTIEN ROY

Problem ‘ Improvement (%) ‘ L&P time (s) ‘ B&P time (s) ‘

arki001 18.7 1237 16877
bell3a 0 1 1
bell5 0.4 1 37
blend2 20.8 7 10
flugpl 13.1 1 13
gen 4.1 50 143
gesa2 24.3 27 261
gesa2_o 47.8 28 354
gesa3 94.0 13 900
gesa3_o 94.1 11 976
gt2 92.7 1 42
qnet1 34.1 1768 6691
gnetl_o 69.4 1 991
rout 8.8 146 135

TABLE 4. Comparison of the computing times, in seconds, between L&P and
B&P, using 5 rounds of lift-and-project on the MIPLIB 3.0 problems (column
“Improvement” reproduced from table 2)

(which would lead to poor performance) our approach only uses the binary reformulation of the
problem to find cutting planes to strengthen the original problem (in general integer variables) to
which branch-and-bound is subsequently applied.

The implementation of our approach, combined with sequential lift-and-project, results in reduced
integrality gaps for some problems, with no significant increase in the number of generated cutting
planes. This suggests that the generation of cuts from the strong non-compact reformulation of
the problem might be an interesting method in some cases.

While lift-and-project is the only cutting planes approach for which we can guarantee the gener-
ation of separating inequalities, it might be interesting to combine our methodology with other
cutting planes approaches, particularly those dedicated to binary problems, to somehow extend
them to the general integer variables case.

Other possible research directions include studying the relationship between the cuts resulting
from applying disjunctive programming to the original (non binary) problem and those resulting
from applying lift-and-project on the strong non-compact reformulation. A comparison between
these two cutting plane generation approaches, both from a theoretical and a numerical point of
view, will be the subject of future research.

REFERENCES

[BCCI3] E. Balas, S. Ceria, and G. Cornuéjols, A lift-and-project cutting plane algorithm for mized 0-1 pro-
grams, Mathematical Programming 58 (1993), pp. 295-323.

[BCCY6] Egon Balas, Sebastidn Ceria, and Gérard Cornuéjols, Mized 0-1 programming by lift-and-project in a
branch-and-cut framework, Management Science 42 (1996), no. 9, 1229-1246.

[BCMS96] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P. Savelsbergh, An updated mized integer program-
ming library: MIPLIB 3.0, Technical Report TR98-03, Department of Computational and Applied
Mathematics, Rice University, 1996.

[Bon03] P. Bonami, Etude et mise en euvre d’approches polyédriques pour la résolution de programmes en
nombre entiers ou miztes généraux, Ph.D. thesis, Université Paris VI, 2003.
[BP03] E. Balas and M. Perregaard, A precise correspondence between lift-and-project cuts, simple disjunctive

cuts, and mized integer gomory cuts for 0-1 programming, Math. Program., Ser. B 94 (2003), 221-245.
[CKS90] W. J. Cook, R. Kannan, and A. Schrijver, Chvdtal closures for mized integer programming problems,
Mathematical Programming 47 (1990), 155-174.
[LHBD*01] R. Lougee-Heimer, F. Barahona, B. Dietrich, J. P. Fasano, J. Forrest, R. Harder, L. Ladanyi,
T. Pfender, T. Ralphs, M. Saltzman, and K. Schienberger, The COIN-OR initiative: Open-source
software accelerates operations research progress, ORMS Today 28 (2001), no. 5, 20-22.

“BINARIZE AND PROJECT” TO GENERATE CUTS FOR GENERAL MIXED-INTEGER PROGRAMS 19

[OMO01] J. Owen and S. Mehrotra, A disjunctive cutting plane procedure for general mized-integer linear
programs, Mathematical Programming 89 (2001), no. 3, pp. 437-448.

, On the value of binary expansions for general mized-integer linear programs, Operations
Research 50 (2002), no. 5, pp. 810-819.

[SA99] H. D. Sherali and W. P. Adams, A reformulation linearization technique for solving discrete and
continuous nonconvex problems, ch. 4, Kluwer, Boston, MA, 1999.

[OMO02]

E-mail address: jean-sebastien.roy@edf.fr

Current address: 1, avenue du Général de Gaulle, 92141, Clamart, Cedex, France.

