
Functional Stochastic Gradient Algorithm with Kernels

Kengy Barty1, Jean-Sébastien Roy2,3, Cyrille Strugarek1,2,4

1École Nationale des Ponts et Chaussées, 2Électricité de France R&D, 3Université Paris VI, 4École Nationale Supérieure de Techniques Avancées

Introduction

We here propose a new family of algorithms based on the mixing of stochastic
approximation techniques, with functional approximation and variational algo-
rithms.

These algorithms allow us to solve numerically without any a priori
parametrization of the set of solution, stochastic optimization problems with
infinite dimensional command variables.

Gradient-type algorithms for problems like

min
u∈Uf

E (j(u(ξ), ξ)), or H(u) = u, (1)

in the Hilbert space L2(X,Y), usually read:

Step k : uk+1 = ΠUf
(
uk + γkrk

)
, (2)

with rk(·) = −∇uj(u(·), ·) or rk = H(uk) − uk. Uf is a subset of L2(X,Y) and
ΠUf denotes the projection over this subset. Since u is infinite dimensional, so is
rk, and (2) is not implementable.

The new algorithms we propose can be written in the following way, for a
command variable denoted by u ∈ L2(X,Y):

Step k : uk+1 = ΠUf

(
uk + γkrk(ξk+1)

1
εk
Kk(ξk+1)

)
, (3)

where for all k ∈ N, uk belongs to L2(X,Y), rk : X → Y is a descent mapping,
ξk+1 is a random variable with values in X, and Kk : X → L2(X,R) is an
approximation mapping called kernel. (εk) and (γk) are two nonnegative sequence
decreasing to 0.

At each iteration, on the basis of a draw ξk+1, we compute
rk(ξk+1) 1

εk
Kk(ξk+1) ∈ L2(X,Y), which builds an approximation of the ideal

direction rk. Since we can choose the kernel mappings Kk such that they are
known by a finite number of parameters, the current iterate uk is perfectly known
by a finite number of parameters : hence, it represents an a finite way an infinite
dimensional object.

The convergence of these algorithms has been proved using probabilistic quasi-
martingale arguments and usual variational and convexity arguments. The proofs
can be found with various point of view in [1] for the general setting, or in [2] for
the closed-loop stochastic optimization problems, or in [3] for the application to
the solution of Bellman-type equations. The mappings Kk, the draws ξk+1 and the
sequences (γk, εk) have to fulfill some conditions in order to get the convergence
of the algorithm 3 to the solution of the underlying optimization problem:∑

k∈N

γkεk = +∞,
∑
k∈N

γk(εk)2 < +∞,
∑
k∈N

(γk)2εk < +∞.

The kernels typically look like:

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

(1/1)*exp(-(x/1)**2)
(1/0.5)*exp(-(x/0.5)**2)

(1/0.25)*exp(-(x/0.25)**2)

Figure 1: Kernel mappings

Least-Square Estimator

Let us here consider the case of estimating on [0, 1] the real function x 7→
sin
(

100
x+1

)
. We consider the following cost function:

∀u, x ∈ R, j(u, x) =
(
u− sin

(
100
x+ 1

))2

(4)

Let ξ be a real random variable following the uniform law on [0, 1]. We define J
to be:

∀u ∈ L2([0, 1],R), J(u) = E (j(u(ξ), ξ)) ,
and we impose the command variable to be a mapping bounded by −0.5 and 0.5.

We now apply our algorithm to the problem of minimizing J . Figure 2 shows
uk obtained after 50, 200 and 1000 iterations, and the convergence speed of the
algorithm.

With the iterations, [0, 1] becomes more and more correctly explored, and hence
the feedback converges.

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

u* u u-u*

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

u* u u-u*

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

u* u u-u*

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000

J(u)-J(u*) ||u-u*||2

Figure 2: Least Square Problem, feedback after 50, 200 and 1000 iterations, and convergence
speed

Optimal Control of an Hydro-Power Plant

We consider the problem of managing an hydro-power plant. One has to make
two successive production decisions u1 and u2. These decisions have to be taken
as feedbacks on successive random selling prices ξ1, ξ2. There is a measurabil-
ity constraint on the first control: the first decision has to be taken prior to any
knowledge of the second price, except its conditional law with respect to the first
one. Mathematically, we consider the following cost function:

j(u1, u2, ξ1, ξ2) = −u1ξ1 − u2ξ2 −
√
ε+ s− u1 − u2, (5)

for all (ξ1, ξ2) ∈
[
x1, x1

]
×
[
x2, x2

]
, and for all u1 ∈ [0, s], u2 ∈ [0, s− u1]. We take

for i = 1, 2, ξi to be a real random variable with uniform law on
[
xi, xi

]
, such that

ξ1 and ξ2 are independent. Classically, the criterion to be minimized is given by:

J(u1, u2) = E (j(u1(ξ1), u2(ξ1, ξ2), ξ1, ξ2)) ,

with u1 ∈ L2(
[
x1, x1

]
,R) and u2 ∈ L2(Πi=1,2

[
xi, xi

]
,R).

We now come to the theoretical solution of this problem. We solve it recur-
sively, using a classical dynamic programming procedure. We first compute the
second optimal feedback u∗2, as a function of the two first prices ξ1 and ξ2 and of
the first feedback u1. It yields:

u∗2(ξ2, u1) =

s− u1 if ξ2 > 1

2
√
ε
,

ε+ s− u1 − 1
4(ξ2)2 if 1

2
√
ε+s−u1

≤ ξ2 ≤ 1
2
√
ε
,

0 if ξ2 < 1
2
√
ε+s−u1

We now have to solve the following problem for all ξ1, by independence:

min
u1∈[0,s]

−u1ξ1 − E
(
u∗2(ξ2, u1)ξ2 +

√
ε+ s− u1 − u∗2(ξ2, u1)

)
We can express the optimal control u∗1(ξ1):

u∗1(ξ1) =

ε+ s− 1

4
(
x2 +

√
2(x2 − x2)(ξ1 −

x2+x2

2)+

)2

s

0

.

The optimal control u∗∗2 is then given by u∗∗2 (ξ1, ξ2) = u∗2(ξ2, u∗1(ξ1)).

We now give few numerical results, with s = 1, ε = 0.1, x1 = x2 = 0.4, x1 =
x2 = 2.

Our algorithm yields the graphs given in Figure 3, giving the evolution of u1

(top), u2 (middle) and the error on u2 (bottom) after respectively 1000, 10000,
and 100000 iterations.

Performing the projection on the subset defined by the constraint u2 ≤ s− u1

is quite difficult, requiring the calculation of an expectation which can only be
performed numerically. We overcome this difficulty by solving the equivalent pe-
nalized problem where u2 is only constrained to be in [0, s], and j (u1, u2, ξ1, ξ2) =
a1u1+a2u2 for all u2 ≥ s−u1, with a1 and a2 being positive penalization constants
appropriately chosen.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

u1* u1 u1-u1*

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

u1* u1 u1-u1*

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.4 0.6 0.8 1
 1.2 1.4 1.6 1.8 2

 0
 0.2
 0.4
 0.6
 0.8

 1

u
 0.8

 0.6
 0.4

 0.2

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.4 0.6 0.8 1
 1.2 1.4 1.6 1.8 2

 0
 0.2
 0.4
 0.6
 0.8

 1

u
 1

 0.8
 0.6

 0.4
 0.2

Figure 3: Reservoir Problem with two time periods, feedback at the first time step (top), at
the second time step (bottom), after 1000 and 100000 iterations

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

J(u)-J(u*) ||u1-u1*||2 ||u2-u2*||2

Figure 4: Reservoir Problem with two time periods, convergence speed

Pricing of a Bermudan Put Option

We apply our algorithm to the pricing of a Bermudan put option. A Bermudan
put option is an option giving the right to sell the underlying stock at prescribed
exercising dates, during a given period, at prescribed prices. It is hence a kind of
intermediate between european and american options. In our case, the exercise
dates are restricted to equispaced dates t in 0, . . . , T , and the stock price Xt follows
a discretized risk-neutral Black-Scholes dynamics, given by:

∀t ∈ N, ln
Xt+1

Xt
= r − 1

2
σ2 + σηt

where (ηt) is a Gaussian white noise of variance unity, and r is the risk-free inter-
est rate. The strike price is assumed to be s, therefore the intrinsic value of the
option when the price is x is g (x) = max (0, s− x). Let us define the discount
factor α = e−r. Given the price x0 at t = 0, our objective is to calculate the value
of the option:

max
τ
E [ατg(Xτ) | X0 = x0] ,

where τ is taken among the stopping times with respect to the filtration generated
by the discretized price process (Xt). In our case, τ ∈ {0, . . . , T}.

Among the multiple methods that have been proposed for option pricing,
two share similarities with our approach. [6] describes an approximate dy-
namic programming approach but neither presents numerical results nor suggests
good choices for the basis. Our work directly extends the methodolgy presented
by guaranteing asymptotic convergence and eliminating the need to choose a basis.

We introduce the Q-functions (Qt) i.e. the expected payoff at time t if we do
not exercise the option. The dynamic programming equation now reads:

Qt (x) = αE [max (g (Xt+1) , Qt+1 (Xt+1)) | Xt = x]

Such equations can be solved by our algorithm. For the numerical experiment,
we take µ = 1, σ = 1, s = 1, x0 = 1 and r = 0.01 (and therefore α = 0.99).

Figure 5 shows the L2 error along the iterations, while Figure 6 show the
Q-functions (Qt,k) along the iterations.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1 10 100 1000 10000

||Qk-Q*||2

Figure 5: Convergence speed

 1 2 3 4 5 6 7 8 9
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1
 10

 0
 0.2
 0.4
 0.6
 0.8

 1

t
x

 1 2 3 4 5 6 7 8 9
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1
 10

-0.5

 0

 0.5

t
x

 1 2 3 4 5 6 7 8 9
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1
 10

 0
 0.2
 0.4
 0.6
 0.8

 1

t
x

 1 2 3 4 5 6 7 8 9
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1
 10

-0.5

 0

 0.5

t
x

Figure 6: Estimation and error at 100, 10000 iterations.

Conclusion

We proposed recently a new approach to solve stochastic optimization problems
with closed-loop decisions, and show the convergence of our approach under
classical stochastic approximation assumptions.

This new approach improves some theoretical results on Hilbert-valued stochas-
tic gradient schemes (see e.g. [5]), and provides an easier setting than previous
ones (see e.g. [4]) to solve infinite dimensional optimization problems.

Moreover, it is easily implementable and yields good numerical results for
many interesting applications.

Further work is in progress to use our approach to solve general Q-learning
problems, and to improve the convergence speed of our algorithms by tricky choices
of the decreasing stepsize sequences.

References

[1] K. Barty, J.-S. Roy, and C. Strugarek. A perturbed gradient algorithm
in Hilbert spaces. Optimization Online, 2005. http://www.optimization-
online.org/DB HTML/2005/03/1095.html.

[2] K. Barty, J.-S. Roy, and C. Strugarek. A stochastic gradient type algorithm
for closed loop problems. submitted to SPEPS, 2005.

[3] K. Barty, J.-S. Roy, and C. Strugarek. Temporal difference learning with
kernels for pricing american-style options. submitted to IEEE Trans. Autom.
Control, 2005.

[4] X. Chen and H. White. Asymptotic properties of some projection-based
Robbins-Monro procedures in a Hilbert space. Stud. Nonlinear Dyn. Econom.,
6:1–53, 2002.

[5] J.-B. Hiriart-Urruty. Algorithmes de résolution d’équations et d’inéquations
variationnelles. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 33:167–186, 1975.

[6] J.N. Tsitsiklis and B. Van Roy. Regression methods for pricing complex
american-style options. IEEE Trans. Neural Networks, 12(4):694–703, July
2001.

