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Abstract - The aim of this paper is to describe the lat-
est load forecasting model used at EDF for mid-term load
forecasting with a particular focus and experiments on sea-
sonality. Its precise description is given along with a discus-
sion on design choices and differences from previous mod-
els. This paper provides a short literature survey of methods
for modeling yearly electrical seasonality in mid-term mod-
els. We present some approaches to improve the modeling
of seasonality, using basis function methods such as cubic
splines or radial functions and a non-parametric local regres-
sion (LOESS). We also test an alternative method to deal with
the modification of the daily load shape throughout the year,
by introducing two Fourier series: one with dependency on
the hour and one with dependency on the day-type. This last
model proves to be the best approach, both in accuracy and
parsimony, but requires great care in the day-type typology.

Keywords - Mid-term load forecasting, Seasonality,
Fourier series, Cubic splines, LOESS, Radial functions

1 INTRODUCTION

Since the advent of electricity markets, the need for
accurate electrical load forecasting has increased. Opera-
tors still run short-term forecasts (five minutes to one week
ahead) to ensure system stability, mid-term forecasts (one
week to a year ahead) for generation optimization and long
term forecasts (one year to 10 years ahead) for invest-
ment planning. Moreover, load forecasting has become
even more important to take part in wholesale markets be-
cause demand is a major determinant of the electricity spot
prices.

The aim of this paper is to describe the latest forecast-
ing model used at EDF for mid-term load forecasting with
a particular focus and experiments on seasonality.

The analysis of the electrical demand shows daily,
weekly and yearly cycles reflecting the influence of eco-
nomic and human activity, calendar effects and weather
conditions. These are the main factors to take into con-
sideration in order to build an efficient load forecasting
model.

Models used for mid-term load Forecasting at Elec-
tricité de France (EDF) therefore decompose the load into
two components:

• a part that is independent from the climate embed-
ding seasonality and trend,

• a part dependent on the climate (mostly tempera-
ture, and sometimes cloud cover).

To achieve an accurate forecast both the weather sensi-
tive part of the load and the seasonal part have to be well
estimated. The French electrical load is very sensitive to
temperature because of the electrical heating development
since the 70’s. The influence of the temperature on the
French load is mostly known, except for the impact of
air conditioning whose trend remains difficult to estimate.
Our experience suggests that a better fitting of the season-
ality would improve the whole accuracy of the mid-term
French load forecasts as well as the short-term forecast
when load level changes due to holidays.

We present in section 2 a short literature survey of
the methods used to handle seasonality in load forecasting
models. As the recent literature is broadly devoted to short
term forecasting (STF) we present both the seasonality
treatment in STF and mid-term forecasting (MTF). Sec-
tion 3 presents the MTF model used at EDF with a partic-
ular focus on seasonality. In section 4 we present paramet-
ric techniques for seasonality modeling, such as regres-
sion on different basis functions: trigonometric functions,
radial functions or cubic splines. We also present a non
parametric model using local regression (LOESS). To deal
with the modification of the daily load shape throughout
the year, an alternative method was experimented, based
on a decomposition into two Fourier series: one depend-
ing of the hour and one depending of the day-type. Section
5 addresses the issue of comparing these models. The re-
sults are presented in section 6, and conclusions are drawn
in section 7.

2 LITERATURE SURVEY OF SEASONALITY IN
LOAD FORECASTING

Conducting a survey about seasonality in load fore-
casting models first drives us to a vast literature in the
field of economics. Indeed, in order to compare the current
observation with that in the previous month, without sea-
sonal effect, economists must apply seasonal adjustment
to data. But the isolation or the extraction of the seasonal
component of economic time series is a difficult issue and
is still an active research field [1, 2]. The most common
approaches to seasonal adjustment in economics are pro-
cedures such as X11 [3] and its successor X12 [4] devel-
oped at the US Census Bureau, or the TRAMO/SEATS
procedure[5] used for example in the EU statistical of-
fice. The X11 and X12 are based on moving averages and
TRAMO/SEATS on ARIMA modeling. These methods
are designed for quarterly or monthly macro-economic
time series like GDP or unemployment. Other methods



are also used: regression on seasonal dummy variables,
seasonal differences in a Box-Jenkins way and local re-
gression smoothing [6].

The trend and seasonality of the electrical load are
quite similar to those of other economic activity series,
with an additional effect created by the variation of day-
light, throughout the year. Another characteristic of the
electrical load is that it exhibits several levels of seasonal-
ity: daily, weekly and yearly. This seasonal part is mostly
smooth with the exception of daylight savings, which in-
troduce singularities two times a year. The observed sea-
sonality is also affected by economic and human activity,
particularly during holidays, and by socio-economic deci-
sions, like “RTT”1 in France, whose impact is observed
but difficult to measure. Load forecasting models have to
take these effects into consideration. The modeling of the
seasonality depends on the forecast horizon and therefore
on the kind of load forecasting model. Load forecasting
models can be broadly divided in four categories:

• time series models,

• artificial neural networks (ANN),

• similar day look-up,

• regression-based approaches.

The three first ones are mainly STF oriented and the last
one is often used in MTF.

2.1 Daily and weekly seasonality

To take into account the daily and weekly seasonality,
a common approach is to decompose data by day-types,
each of them having its own load pattern. The existence
of several different day-types has been shown by several
researchers. Day-types are determined by both forecasters
expertise and clustering techniques. For ANN models[7],
inputs include day-types and historical loads, since loads
at the same hour are strongly correlated.

For the time series approach, the seasonality is handled
in the time series framework[8] by a seasonal ARIMA
(SARIMA), or by Kalman filtering[9]. Seasonal differ-
encing using the period of the seasonal variation, usually,
24 (a day) and 168 (a week) for an hourly data set, is re-
quired. To introduce an explanatory variable like temper-
ature, SARIMAX models[10, 11] can be used.

In similar day look-up, the similarities lead to a “natu-
ral” classification of normal days in five types[12]: {Mon-
day}, {Tuesday, Wednesday, Thursday}, {Friday}, {Sat-
urday} and {Sunday}. For regression based approaches
separate models are usually estimated for each day-type.
Nevertheless, separate models, per day-type or per-hour,
are not a necessity, and better results can often be obtained
by global models having some parameters dependent on
the day-types and some other dependent on the hour, and
similarly for other factors. The model described in section
3 is of this kind.

2.2 Yearly seasonality

In STF models, the estimation of the parameters on a
relative short time window allows in most cases to remove
the need for yearly seasonality modeling. Another way to
address this issue consists in building different models for
each season[13]. For example, [14] proposed a seasonal
ANN, consisting of 12 independent networks assigned to
a particular season and transitions between seasons. In the
similar day look-up approach, no particular treatment is
required, similar days are likely to be the days in the same
season as the day to forecast.

In MTF models, the yearly seasonality can be simi-
larly handled by separate load forecasting models for the
different seasons. [15] built a model that only focuses
on Summer. [16] used an unsupervised segmentation to
break the time series in “winter” and “summer” and learn
two separate models for each season. But disaggregation
of load by day-types and season can reduce the amount of
data available to estimate such models. Therefore, a single
model can also be used with dummy variables and trigono-
metric functions for modeling seasonal effects. [17] used
a time-series decomposition and a Fourier series to take
into account the yearly seasonality. This kind of model
for seasonality is used at EDF and is described in detail in
section 3.

3 EDF LOAD FORECASTING MODEL

3.1 History

EDF has used mid-term regression models since the
introduction at the end of the eighties of the non-linear re-
gression model Météhore[18]. This model, mainly used
for French load, has been regularly improved most no-
tably in the PREMIS framework[19] designed by F. Dazy
(EDF R&D) in 1997. This model is still in use at EDF.
In 2001, an improved model, Eventail, based on the same
principles was introduced by A. Bruhns and J.S. Roy. This
model, used for European countries down to small groups
of clients load forecasting and analysis, in various EDF
entities, including the EDF Trading subsidiary, is contin-
uously being improved. The current version is described
below.

3.2 Model Design

Models used for mid-term load Forecasting2 at Elec-
tricité de France (EDF) are regression models based on
past values of load, temperature, date and calendar events.
The relationship of load to these variables is estimated by
non-linear regression, using a specifically preconditioned
variant of S.G. Nash’s truncated Newton method[20] de-
veloped by J.S. Roy. Forecasting load is performed by ap-
plying the estimated model to forecasted or simulated tem-
perature values, date and calendar state. The short term
forecasts are performed using an auto-regressive processes
applied to the past two weeks residuals of the model.

1Reduction of the weekly work schedule from 39 hours to 35 hours.
2Also called climatic correction models, since they evaluate the influence of temperature on load.



Design of this model was strongly oriented toward
obtaining a single statistical model (previous models in-
cluded multiple steps, separating a yearly parameters esti-
mations, and a trend estimation by linear regression), able
to estimate parameters and produce forecasts for all ob-
servations, including holidays periods (previous models
where unable to cope with holiday periods and invalidated
them, requiring the use of specific tools or heuristics to
perform a complete forecast), and a simple, non heuristic
estimation method (previous models used a mix of linear
regression, direct search, smoothing heuristics and man-
ual adjustments). These design decisions simplified im-
plementation, improved performance, and made possible
many kinds of performance assessment (confidence inter-
vals on parameters, cross-validation), that where previ-
ously very difficult.

3.3 Model Description

The model is based on a decomposition of the loadPi,
wherei indices the observations, into two components:

• Phci the weather independent part of the load that
embeds trend, seasonality and calendar effects,

• Pci the weather dependent part of the load.

The model stipulates3:

Pi = Phci + Pci + εi (1)

Whereε is the error of the model. While the errors are
obviously non-gaussian, they are usually assumed to be,
purely for simplicity reasons. Correcting this assumption
might improve the parameter estimates and even more so
the validity of their confidence intervals, but is beyond the
scope of this paper.

To describe the model we introduce the following no-
tations:

• hi: the hour for observationi,

• ki: the day type:

The day-types are obtained through clustering, us-
ing only predictable calendar information, using a
computationally intensive k-means method adapted
to the non-linear nature of the model, since the
clustering objective used is to minimize the whole
model sum of squared residuals. A bayesian cri-
terion is used to select the number of day-types,
usually between 7 and 10, These optimized day-
types often offer a forecast quality improvement of
approximately 100 MW, about 10% of the RMSE.
A perfect but non predictable day-type typology
would gain another 100 MW.

• ji: the julian day divided by 365.25,

• yi: the date, in fractional years, from an arbitrarily
chosen reference,

• pi: the period of the year:

We will divide the year in different periods to dis-
tinguish:

– daylight savings in March,

– holidays in August,

– daylight savings in October,

– holidays in December.

A different value ofpi is associated with each pe-
riod. During holidays, each week is a different pe-
riod. At the end, about 10 periods are used.

Whenever non ambiguous, we will drop the indicesi to
lighten the notations. In the following description, the es-
timated model parameters are denoted inbold, the indices
specifying that there is one parameter per value of the in-
dices.

The temperature sensitive partPci is fitted by a non
linear model in order to reflect a linear load increase when:

• temperature falls under a cold temperature threshold
(heating gradient) ;

• temperature increases over a hot temperature thresh-
old (cooling gradient).

The temperature sensitive partPci is therefore additively
separated into two parts, one for heatingPci, and a sim-
ilar one for coolingPci, with its temperature threshold
reversed. We therefore only present the heating part. Mul-
tiple weather stations can be used and each of the weather
stations temperature series is exponentially smoothed in
the model4. Let ti,s be the temperature for observationi
and weather stations in S, the set of weather stations for
which temperature data is available. The smoothed tem-
peratureui,s is calculated by:

ui,s = θui−1,s + (1− θ) ti,s

This smoothing is mainly designed to model the inertia
in temperature variations inside buildings, withθ ' 0.98
for hourly series. The smoothed temperature is then aver-
aged with the observed temperature, to model that a part
of the load will be directly related to the observed tem-
perature, and a part of it will be related to the temperature
felt inside the buildings. The cloud coverni,s is added to
the resulting value, as a modifier to take into account the
greenhouse effect5 :

vi,s = (1−αh)ui,s +αhti,s + µhni,s

This temperature is input in a threshold functionψ of
the form:

3The actual model includes an additional term to take into account real-time pricing.
4In the actual implementation, the smoothing parameter can be defined per hour.
5This last term is absent from the cooling part.



ψ (x, t, σ) = Emin (x− T, 0)

Where t is the the temperature threshold,σ is the
dispersion of the threshold among the population, and
T ∼ N (t, σ). See figure 1. This model assumes the
temperature thresholdT at which heating is started fol-
lows a specific distribution whose parameters are to be es-
timated in the model, and that, below the threshold, the
effect of heating on load is linear. This is a strong ap-
proximation, and very different effects can be observed for
very low temperature, like sharp increases related to elec-
trical supplemental heating, or saturation effects when all
heating equipments are already running at their maximum
output. Non parametric models are especially effective in
this case, but they are more difficult to interpret and to use
for stress testing, and are therefore not used here.
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Figure 1: Threshold functionψ with t = 15 andσ = 0.5.

Finally, the heating part takes the form :

Pci =
∑
s∈S

gh,s · (1 + r · y) · ψ
(
vi,s, th,σ

)
Wheregh,s is the heating gradient for weather station

s and hourh, r is the gradient’s trend,th is the heat-
ing temperature threshold for hourh andσ is the heating
threshold dispersion. The previously used model averaged
all the weather stations temperature before applying a sin-
gle gradient. This assumes that, for example for a country,
all the population reacts to the country’s average tempera-
ture, while it is quite possible that part of the country are
subject to low temperature, while another part is not.

The weather independent componentPhci is multi-
plicatively decomposed into three components:

• a load shape partΠh,k that incorporates daily and
weekly seasonality,

• a yearly seasonality partSi,

• a trend6 Ri = 1 + r · y.

Thus:

Phci = Πh,k · Si ·Ri

The yearly seasonalitySi is described for each hour
by:

Si = qh,p + Fi (2)

The variablesqh,p are dummy variables, per hourh
and per periodp designed to cope with singularities intro-
duced by daylight savings and holidays. For each hourh,
a certain amount of load is added or removed depending
on the period. The dates of these singularities are known
in advance for both daylight savings and holidays.

The partFi is equal to the first four terms of a Fourier
series:

Fi =
4∑

m=1

ah,m cos (2πmj) + bh,m sin (2πmj)

Where ah,mand bh,m are the coefficients of the
Fourier series of the hourh. From our experience, a use of
such a model for seasonality makes it unnecessary to use
a daylight duration variable in order to take into account
the effect of lighting.

Confidence intervals for the parameters are computed
using a moving block bootstrap method[21] with a heuris-
tically chosen block size, which may not be a crucial
choice, since nearly similar results are obtained for all
block sizes greater than a month. These confidence in-
tervals help remove non-identifiable parameters. The im-
plementation of the model and its graphical user interface
offer some flexibility, enabling the user to remove irrele-
vant parts of the model, or to remove degrees of freedom
from the parameters, for example by specifying that some
parameter (e.g. the heating gradient) must not depend on
the hour but only on the weather station. K-fold block
cross-validation (see section 5) enables the user to assess
the forecasting power (or lack of it) of the estimated model
on its data-set.

The current implementation runs on both Unix work-
stations and Windows PCs. On Windows, a small graphic
interface is used to estimate parameters, and an Excel XLL
extension is used to perform forecasts and simulations. On
Unix, the software makes use of multi-processor worksta-
tions for bootstrap and cross-validation tasks. For more
intensive testing, a slightly different implementation en-
able these two tasks to be performed on a cluster of work-
stations.

While computationally difficult to estimate (strong
non-linearities, particularly with the temperature smooth-
ing parameters and the thresholds, large number of pa-
rameters estimated simultaneously, complex estimation
function, large data-sets), this model provides reasonably
good results, with year ahead forecast errors, for known
weather, being around 2%, and day ahead forecasts errors
being around 1.5%, without any user intervention.

We nevertheless think that this can be improved. In
section 4 we present other basis functions such as radial
functions and cubic splines. We also experiment the use
of two Fourier series to introduce a relationship with day-
types, and a non-parametric method based on local regres-
sion (LOESS). The aim is to provide a model that provides
a better fit, especially during holidays.

6The trend model is slightly more complicated in practice, allowing for changes in trends.



4 METHODS FOR SEASONALITY

In this section we present the models that we have
tested to fit the yearly seasonality. In order to deal with
daylight savings and holidays, a common approach is the
use of dummy variables as presented in 3.3.

Three kinds of models have been experimented:

• Basis function methods: Fourier series, radial basis
functions, periodic splines ;

• Sum and product of two Fourier series ;

• A non parametric model based on local regression
(LOESS).

4.1 Basis function methods

The basic model of smoothing procedure in the basis
function framework is to fit the data by a functionf which
is a linear combination ofM known basis functionsφm:

f (x) =
M∑
m=1

βh,mφm (x) (3)

Different basis functions can be chosen. The best ba-
sis should achieve a good fitting of the data with a relative
small value ofM .

The first basis function we experimented is the Fourier
series currently used in the model. Assumingx lies in
the[0, 1] interval, the basis functions are:cos (2πmx) and
sin (2πmx) wherem is an integer value to catch the dif-
ferent frequencies of the data.

The second basis tested is a periodic cubic splines ba-
sis. In a cubic spline regression model,f is constructed
by joining together polynomials of degree at most 3. The
polynomials are joined at values called knots in such a way
that continuity in second derivatives is preserved. The key
feature is the numberM of knots equivalent to the number
of basis functions and the location of the knots. In our ap-
plication we used equi-spaced knots. An optimization of
the location of the knots would improve the results at the
expense of an increase in number of parameters but is very
difficult to perform. The basis functions are defined by the
M splinesφk, k = 1, . . . ,M , whereφk is the spline func-
tion equals to1 at knotk and0 at the other knots.

The third basis functions tested are radial basis func-
tions. The most used radial basis functions are:

• multiquadric:φ (x) =
√
x2 + c2 for some constant

c ;

• inverse multiquadric:φ (x) = 1√
x2+c2

for some
constantc ;

• gaussian:φ (x) = e−cx
2

for some constantc ;

• thin plate spline:φ (x) = x2 · lnx.

Once the radial basis functionφ has been chosen, theM
basis functionφk, k = 1, . . . ,M , are then built by choos-
ing M knotsxk, in the definition interval, and defining

φk (x) = φ (|x− xk|). In our application we used equi-
spaced knots. The constantc, used in most radial basis
functions, is usually estimated separately.

To deal with the daylight savings and holidays the ba-
sic model (3) is modified in order to incorporate dummy
variables as presented in (2). With the notation of our
problem the regression model for the seasonalitySi is:

Si =
M∑
m=1

βh,mφm (j) + qh,p

The next subsection presents a local regression model,
which can also be considered as a basis function method,
but a non-parametric one.

4.2 LOESS

Local regression (LOESS[22]) is an approach to fitting
curves and surfaces to data by smoothing. The principle
of LOESS is that the fitf (x) at x is the value of a para-
metric function fitted only to observations in a neighbour-
hood ofx. The radius of neighbourhood is chosen so that
the neighbourhood contains a specified percentage of the
data points. The fraction of the data, called the smooth-
ing parameterλ, controls the smoothness of the estimated
surface. Data points in a given local neighbourhood are
weighted by a smooth decreasing function of their dis-
tance from the center of the neighbourhood, usually the
tricube weight function. Weighted least squares is used to
fit linear or quadratic functions in the neighbourhood ofx.
In this work we consider a linear function. The smoothing
parameter is chosen by cross-validation. In our setting, a
LOESS regression is performed per hourh, and the values
of the dummy variables are estimated by back-fitting[23].

Si = fh (j) + qh,p

4.3 Two Fourier Series

To improve the model and taking account of the mod-
ification of the daily load shape throughout the year, we
have modified the componentFi of the seasonality (2) by
introducing another Fourier series. The seasonality be-
comes:

Si = Gi · (qh,p + Fi)

whereGi is given by:

Gi = 1 +
N∑
n=1

cn cos (2πnj) + dn sin (2πnj)

wherecn and dn are the coefficients of the Fourier
series associated with frequencyn.

We have also experimented a product of a Fourier se-
ries per day-type times a Fourier series per hour, by re-
placingcn (resp. dn) by cn,k (resp. dn,k), wherecn,k
anddn,k are the coefficients of the Fourier series depend-
ing on the day-typek.

The last test was to incorporate in our models a sum of
a Fourier series per hour and a Fourier series per day-type.
All results of these methods are presented in section 6.



5 MODELS COMPARISON

5.1 Extraction of the “noisy” yearly seasonality

To test the different models of seasonality three meth-
ods were possible:

1. Direct estimation in the current non-linear model,

2. Approximate the current model with a linear one7,

3. Extract the seasonality from the data and model it
apart from the whole model.

The first method is time consuming because of the com-
plexity of the non-linear model and its estimation. Further-
more, the LOESS method, being non-parametric is diffi-
cult to estimate in the current model implementation. We
will nevertheless use the current model to test the product
of Fourier series because this method requires a non-linear
estimation.

The second and third methods were tested and pro-
vided the same conclusion. We only present the third one
which is simpler. The principle is to use the result of the
estimated model in order to extract the seasonality com-
ponent. Combining equations (1) to (2) we obtain:

εi =
((

Pi − Pci
Πh,k ·Ri

)
− Si

)
·Πh,d ·Ri

From this equation we can identifySi which is the es-
timated yearly seasonality, and̃Si which can be regarded
as the “noisy” seasonality (see figure 2):

S̃i =
Pi − Pci
Πh,k ·Ri

Our aim is to fit the S̃i weighted by wi =
(Πh,k ·Ri)2, so as to improve the whole model.

For the numerical experimentations, we use an hourly
data set, with seven years worth of observations from 1995
to 2001. We perform an estimation of the parameters and
of all the model’s components, and above all the “noisy”
seasonality. Performing cross-validation (see subsection
5.2) on this model will obviously under-estimate the fore-
casting error of the whole model, for which many other
parameters have to be estimated. Nevertheless, our ex-
periments show the same number of parameters are ob-
tained by both performing cross-validation on the season-
ality only, and on the whole model. This suggests the er-
rors on the estimation of other parameters cannot be cor-
rected by over-fitting the seasonality.

Estimated Noisy

R
el

at
iv

e 
L

oa
d

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Date
01JAN96 01MAR96 01MAY96 01JUL96 01SEP96 01NOV96 01JAN97

Figure 2: Seasonality at 19h, in 1996 : noisỹS and estimatedS.

5.2 Comparison criteria

In order to compare the models and select the best one,
a criterion has to be defined. The main objective of mid
term models at EDF is to provide, given a temperature
scenario, the most accurate forecast in the RMSE sense,
for a one year horizon. It is therefore reasonable to com-
pare the models using the value of the RMSE obtained on
such forecasts. The lack of a long enough coherent data
set renders difficult its splitting into an estimation and a
validation data set. As an alternative, we will use block
cross-validation.

Given that the data are highly correlated in time, in-
stead of using a classic leave one out cross-validation or
k-fold cross-validation, we will chose to leave out a con-
tinuous block of observations. The size of the block is em-
pirically guided both by the time dependency of the data
and the forecast horizon, usually one year. In our case, we
estimate that, beside the yearly periodicity, no correlation
should be observable beyond one month. We proceeded
to test block sizes of one month and of one year, and got
the same results. The following comparisons are therefore
done with subsets corresponding to each year. Variance
in cross-validation RMSE among the subsets were quite
small, so that even small improvements in RMSE may be
significant.

From our opinion, the largest bias of this method
comes from the fact that we will make forecasts knowing
not only the past, but also the future (beyond the period
forecast), which is sure to improve the RMSE and bias the
model selection toward less robust models. While we are
unable to estimate it, we expect that, given the fact that the
trends were removed, the bias should be quite small.

Another problem is that the models will probably have
many unidentifiable parameters, even if these do not per-
turb the forecast. While this may interfere with the anal-
ysis of the parameters, such analysis is never performed.
The fact they have no impact on the forecast is the impor-
tant point here. Moreover, eliminating these unidentifiable
parameters in the model (i.e. nodes for RBF and Spline
approaches, and frequencies for the Fourier approach), is
quite uneasy, since these parameters might not be the same
for each data set.

7Joint work with J. Collet, EDF R&D.



Nevertheless, this cross-validation approach solves the
problem of comparing both parametric to non-parametric
models. It would also be possible to compare those models
by the number of parameters, by computing an equivalent
number of parameters for non parametric models based on
the trace of the smoothing matrix. This computation might
be affected by the time dependency of the data, and was
not used.

6 RESULTS

6.1 Comparisons inside the current model

Inside Eventail we were able to compare three Fourier
approaches: A Fourier series per hour, a single Fourier se-
ries per day times a Fourier series per hour, and a Fourier
series per day type times a Fourier series per hour.

Our results show that for the Fourier series per hour,
the best cross-validation results, 966 MW are attained for
20 terms (i.e., 40 parameters per hour, which seems quite
a lot), a much higher value than the 4 terms currently in
use, for which the cross-validation error is 991 MW. The
seasonality appears much more stable across time than we
had expected.

For the product of a Fourier series per day and a
Fourier series per hour, the best result is not improved over
the use of a single Fourier series. On the other hand, this
form appears more parsimonious for a small number of
parameters, since with 8 terms for the first series, and 8
terms per hour for the second, this form attains 971 MW,
a result only attained with 14 terms per hour for the single
Fourier series, i.e., about 6 parameters more per hour.

For the product of a Fourier series per day type and a
Fourier series per hour, the best result, 917 MW, was at-
tained for 6 terms in the first series and 20 terms in the
second one. A slightly worse result of 925 MW was ob-
tained with 8 terms in the second series. These results
suggest that this is clearly the best approach so far. Nev-
ertheless, great care should be taken to ensure that the day
types used are similarly distributed among the days of the
year for each year of the data set, since the Fourier series
per day-type is almost guaranteed to have abnormal val-
ues during periods were the corresponding day type were
not observed during estimation. This may mandate using
different typologies for the Fourier series and the load pat-
terns used in the model.

We also tried additive models, which gave completely
similar results, suggesting that a multiplicative model is
unnecessary.

6.2 Comparison apart from the current model

In this subsection we present the results obtained for
the basis regression methods and the LOESS method, ap-
plied to the noisy seasonality described in subsection 5.1,
using the the same cross-validation criterion. Note that the
RMSE values obtained are not directly comparable to the
values obtained on the whole model.

For the regression on basis functions, the results of the
different methods are comparable : the best RMSE is 938

MW for 32 cubic splines and 32 radial basis (whatever
the radial basis function used), and 939 MW for a Fourier
series of 16 parameters (equivalent to 32 functions). The
results are not so surprising, because in our tests for cu-
bic splines and radial basis functions, the knots were equi-
spaced. The results for these methods would be improved
with an optimization of knots location. But this optimiza-
tion was complex in our cross-validation scheme.

For the LOESS the best RMSE is 948 for a smoothing
parameterλ = 0.022 (a few weeks worth of data around
value to estimate). This result suggests that this method is
less robust than parametric regression.

7 CONCLUSION

This paper describes the latest mid-term load forecast-
ing model used at EDF for mid-term load forecasting.
This statistical non-linear model is able to estimate param-
eters and produce forecasts for all observations, including
holidays periods. Its design makes possible many kinds
of performance assessment (confidence intervals on pa-
rameters, cross-validation) and provides improved perfor-
mance. Besides the description of this model, we present
some approaches to improve the modeling of seasonality.
Parametric techniques such as regression on different ba-
sis functions: trigonometric functions, radial functions or
cubic splines were experimented. We also present a non
parametric model using local regression (LOESS). The re-
sults obtained by these methods are comparable to those
of the current model. Results would be improved in the
case of splines and radial function with knots location op-
timization.

An alternative model combining two Fourier series,
one depending on the hour like in the current model, and
one depending on the day-type in order to deal with the
modification of the daily load shape throughout the year,
was also tested. This last model proves to be the best ap-
proach, both in accuracy and parsimony, but requires great
care in the day-type typology. This model is now inte-
grated with the current model and performs well: for sum-
mer holidays a gain of 25% in RMSE is observed. Further
work should address the issue of building different typolo-
gies for the Fourier series and the load patterns used in the
model. It would also be interesting to experiment alterna-
tive approaches to dummy variables.
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