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Abstract. To overcome the curse of dimensionality usually encountered in dynamic program-
ming problems with high-dimensional state spaces such as in option pricing problems, most
approaches so far have proposed some sort of discretization, either on the state space or on
the underlying functional space, for example by approximating the value function as a linear
combination of a predefined finite functional basis.

Because of this discretization, these methods give up optimality from the beginning. We
introduce an alternative approach based on functional gradient descent and using an infinite
kernel basis, that preserves optimality under very light conditions while being implementable in
practice.

We present a temporal difference scheme adapted to this approach, applied to Bermudean
option pricing, and propose a comprehensive methodology on how to efficiently implement this
algorithm. We also compare our results to numerous existing methods, and provide empirical
statistical results.

1. Extended abstract

Since the early 70s, the field of mathematical finance and, more specifically, the option val-
uation theory, has been studied very thoroughly. Numerous techniques exist to price portfolios
relying on multiple assets, and most of them rely on a parametrization : either they discretize the
state space (see e.g. the binomial or multinomial approaches in [Ross, 1976], [Cox et al., 1979],
the stochastic mesh method in [Broadie and Glasserman, 1997], or the quantization algorithm in
[Bally et al., 2005]), or they consider a truncated basis of L2 for the computation of the condi-
tional expectation (see e.g. [Longstaff and Schwartz, 2001] and [Tsitsiklis and Roy, 1999]) and try
to optimize the coefficients of the linear combination of this basis, in a least squares approach.

We propose an alternative approach for these problems that is non-parametric and avoids any
discretization of space. Our method relies on the convolution by kernels, typically Gaussians, and
has been introduced and its convergence proved in [Barty et al., 2005]. The functional subspace
of L2 that we consider grows along with the number of iterations, and the coefficients of kernel
functions are not optimized by regression, but obtained once for all by a single temporal difference
computation.

Our method can be introduced as an extension of the Robbins-Monro stochastic approximation
algorithm [Robbins and Monro, 1951] and, more recently, the temporal difference-based algorithm
TD(0) [Sutton, 1988]. Indeed, it extends those methods to the case of infinite-dimensional sto-
chastic approximation.

In order to speed up the algorithm, we make use of the Improved Fast Gauss Transform to
approximate sums of Gaussian kernels. This technique has already been used in mathematical
finance, see for instance its applying to the multinomial and the stochastic mesh methods in
[Broadie and Yamamoto, 2003] for the case of discrete-time American-style options. This tech-
nique enables us to ensure our algorithm perform a constant amount of computation at each
iteration which make it suitable for a very large number of iterations.

Several other techniques are presented and used to improve the rate of convergence of the
algorithm, such as averaging of the iterates[Polyak and Juditsky, 1992] and making use of low
discrepancy random number generators combined with a brownian bridge. The performance of
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our implementation is assessed through numerous numerical experiments and comparisons against
most well-known pricing algorithms.

2. Overview of our algorithm

2.1. Problem. We here consider Bermudean options with exercise dates belonging to a finite
subset of [0, T ]. The price of a Bermudean option with evenly spaced exercise dates {t0, t1, . . . , tN =
T}, maturity T , discount factor α = B(t1, t2) and initial stock price x is given by

(2.1) J0(x) = max
τ∈{t0,t1,...,tN}

E [ατg(Xτ ) | Xt0 = x] ,

where the price process X is a Markov chain
{
Xtj ∈ S, 0 ≤ j ≤ N

}
with S = Rd the multi-

dimensional state space. The intrinsic value of the option is g : S → R+.
Let us now introduce the dynamic programming counterpart of (2.1).

JN+1(x) =0,(2.2a)

Jj (x) =max
(
g (x) , αE

[
Jj+1(Xtj+1) | Xtj = x

])
, ∀ 0 ≤ j ≤ N.(2.2b)

We can equivalently write the equations (2.2) with the so-called Q-functions :

Qj (x) = αE
[
Jj+1(Xtj+1) | Xtj = x

]
,

i.e. the expected payoff if we do not exercise the option. Hence it comes:

(2.3) ∀0 ≤ j ≤ N, Jj(x) = max (g(x), Qj(x)) .

Equation (2.2) now reads :

QN (x) =0(2.4a)

Qj (x) =αE
[
max

(
g

(
Xtj+1

)
, Qj+1

(
Xtj+1

))
| Xtj = x

]
, ∀ 0 ≤ j ≤ N − 1.(2.4b)

Equations (2.4) can of course be rewritten as an infinite horizon stochastic dynamic program, by
letting the state be defined by (j, x) ∈ {0 ≤ j ≤ N} × S, and defining the associated nonhomoge-
neous Markov chain. Finally, the function Q̂ : {0 ≤ j ≤ N}×S → RN defined by Q̂(j, x) = Qj(x)
verifies the following fixed point equation:

(2.5) Q̂(j, x) = αE
[
max

(
ĝ

(
V̂

)
, Q̂

(
V̂

))
| V = (j, x)

]
,

with

L
(

V̂
∣∣∣ V = (j, x)

)
=

{ (
j + 1,L

(
Xtj+1 |Xtj = x

))
, if j ≤ N,

(j + 1, V ∞) , else, with V ∞ = +∞,

and for all x ∈ S, ĝ(j, x) = g(x), and ĝ(j, V ∞) = 0.
The algorithm builds sequences Qk that converge to Q∗. Then we come back to J∗ using

equation (2.3).

2.2. Algorithm. We use the following notation convention: we note xk
tj

the k-th draw (realiza-
tion) of the random process Xtj . We propose the following algorithm:

Algorithm 2.1. Step -1 : initialize Q0
j (·) = 0 for all 0 ≤ j ≤ N − 1,

Step k ≥ 0 :

• Draw xk
tj

,∀1 ≤ j ≤ N independently from the past drawings, starting from xk
t0 = x and

with respect to the law of the Markov chain X ;
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• Update: 

Qk+1
N (·) = 0,

Qk+1
N−1(·) = Qk

N−1(·) + ρk
N−1 ∆k

N−1 Kk
N−1(x

k
tN−1

, ·),
...

Qk+1
j (·) = Qk

j (·) + ρk
j ∆k

j Kk
j (xk

tj
, ·),

...
Qk+1

0 (·) = Qk
0(·) + ρk

0 ∆k
0 Kk

0 (xk
t0 , ·).

where
∆k

j = α max
(
g

(
xk

tj+1

)
, Qk+1

tj+1

(
xk

tj+1

))
−Qk

j (xk
tj

).

where K-functions are chosen kernels, i.e. bounded mappings S×S → R, with K(x, ·) non-zero
on a subset of S centered on x. A typical choice of these kernels is Gaussian functions:

Kk(x, y) = exp

{(
x− y

εk

)2
}

.

where εk decreases to zero when k goes to infinity.
Let us note (Qk) = (Qk

j )0≤j≤N . We proved that the sequence (Qk)j∈N strongly converges to
Q∗. Steps ρk

j and radius of the kernels must be decreasing real sequences, that satisfy the following
relations: ∑

k∈N
ρk

j εk = ∞,
∑
k∈N

(
ρk

j

)2
εk < ∞,

∑
k∈N

ρk
j εkηk < ∞,

where ηk = (εk)
1
d and d is the dimension of the space.

As one can see, we are working directly in the infinite dimension state space to which the
solution belongs. In spite of the infinite dimension, this method remains numerically tractable
since in order to compute Qk+1 one only needs to keep in memory

{
Qk,∆k, Xk+1

}
:

Qk
j (·) =

k∑
i=0

ρi
j ∆i

j Ki
j(x

i
tj

, ·) + Q0
j (·), ∀j ≤ N.
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