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Introduction

Among the various methods used to price American-style options,
a classical one is to discretize time and to use either:

Approximate dynamic programming
[Van Roy and Tsitsiklis, 2001];
Quantization [Bally et al., 2002];
The regression method of [Longstaff and Schwartz, 2001].

Beside the time discretization, these methods require some kind of
state space discretization, usually through an a priori choice of
functional basis used to represent the value of the option.

By choosing an a priori functional basis, these methods usually give
up optimality. My objective will be to present an alternative,
nonparametric algorithm to solve dynamic programming problems
without a priori discretisation.
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Presentation outline

1 Stochastic approximation

2 Convergence of the algorithm

3 Application to pricing
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Fixed point problem

Typically, the pricing of a Bermudan option can be reduced to the
solution of a fixed point problem in L2 such as:

u (x) = E (h (u (Y) ,X)|X = x)

= H (u) (x)

where H is a contraction mapping and X and Y are two random
variables with values in S .

Such fixed point problems arise for example from dynamic
programming equations such as:

J (x) = E (g (x ,W) + αJ (f (x ,W)))

where x is the state of the system, W a random noise, g the
immediate cost, f the dynamic, α a discount factor, and J the
expected cost we try to evaluate. Here, Y = f (X,W).

Kengy Barty, Jean-Sébastien Roy, Cyrille Strugarek Temporal Difference Learning with Kernels



Agenda
Stochastic approximation

Convergence of the algorithm
Application to pricing

Conclusion
Bibliography

Stochastic fixed point problems
Stochastic approximation with kernels

Approximate Dynamic Programing

To alleviate the infinite dimension problem, a classical solution
consists in parametrizing function u, which leads to approximate
dynamic programming [Bellman and Dreyfus, 1959]. Let A = (ai )
a parameter vector and (fi ) a predefined family of functions of the
state, we search u among the linear combinations of (fi ):

u (x) =
∑

i

ai fi (x)

The resolution is then performed by solving a finite dimensional
fixed point problem on A.

It is usually not optimal, and we usually have no idea of the error.

Quantization [Bally et al., 2002] is a subcase where the state space
S is discretized into a partition S =

⋃
i Pi and fi = 1Pi

.
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Value iteration

As with most fixed point problems, resolution is performed by
iteratively applying the operator H from any starting point u0, a
procedure called value iteration [Bellman, 1957] in the dynamic
programming context:

un = H (un−1)

In most cases, the expectation in H can only be estimated through
Monte-Carlo simulation, which leads, for example, to the
Robbins-Monro stochastic approximation algorithm.
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Robbins-Monro algorithm

For a fixed x , we perform an estimation of the expectation

H (u) (x) = E (h (u (Y) ,X)|X = x)

through random samples (yn (x)) of Y, and recursively average the
values obtained. Let:

∆n−1 (x , y) = h (un−1 (y) , x)− un−1 (x)

We obtain the Robbins-Monro stochastic approximation algorithm
[Robbins and Monro, 1951]:

un (x) = un−1 (x) + ρn∆n−1 (x , yn (x))

with ρn ↓ 0,
∑

n ρn = ∞ and
∑

n ρ2
n < ∞. The update is then

performed on all x .
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Temporal differences

Remark that the Robbins-Monro algorithm can be rewritten as:

un (·) = un−1 (·) + ρnE (∆n−1 (X, yn) δX (·))

Instead of updating the u function for all states x , we could
randomize the updated state at each iteration. Let (xn) be random
draws of the state X. We obtain the TD(0) temporal difference
algorithm [Sutton, 1988]:

un (x) =

{
un−1 (xn) + ρn∆n−1 (xn, yn (xn)) if x = xn,

un−1 (x) else.

This algorithm is not implementable when S is continuous and not
practical when S is discrete with a large cardinal number (as with
fine discretization of a high dimensional state space).
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Approximation of a Dirac

When the state space is continuous, the TD(0) algorithm cannot
be implemented since the updates are pointwise in xn. We suggest
to approximate the Dirac δxn (·) using a kernel of bandwidth εn ↓ 0:

f (·) = E (f (X) δX (·)) = lim
n→∞

E
(

f (X)
1

εn
Kn (X, ·)︸ ︷︷ ︸
mollifier

)
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Figure: Approximations with Gaussian kernels (ε ∈ {1, 0.5, 0.25}).
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TD(0) with kernels

We therefore propose the following temporal difference learning
with kernels algorithm:

un (·) = un−1 (·) + ρn∆n−1 (xn, yn (xn))
1

εn
Kn (xn, ·)

Usually Kn (xn, ·) = K
(

xn−·
ηn

)
with εn = ηd

n and K a d-dim. kernel.

This algorithm avoid the a priori parametrization of the function u,
and we proved this algorithm converge in [Barty et al., 2005c].

Moreover it is easily implementable, requiring only at each iteration
the storage of the vector αn := ρn

εn
∆n−1 (xn, yn (xn)), the vector xn

and the shape of Kn (usually defined by its bandwidth εn). so that:

un (x) =
∑
i≤n

αiKi (xi , x)
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Hypotheses for on kernels

We assume H is a contraction mapping, i.e. ∃β ∈ [0, 1[ s.t.∥∥H (u)− H
(
u′

)∥∥ ≤ β
∥∥u − u′

∥∥
with ‖u‖ =

√
E

(
‖u (X)‖2

)
.

Let rn (x) = E (∆n (X,Y)|X = x),

∃b1 ≥ 0 s.t.∥∥∥rn−1 (·)− E
(
rn−1 (X) 1

εn
Kn (X, ·)

)∥∥∥ ≤ b1ηn (1 + ‖rn−1 (·)‖),
i.e. the bias is controlled and asymptotically zero,

∃b2 ≥ 0 s.t.

E
(∥∥∥rn−1 (X) 1

εn
Kn (X, ·)

∥∥∥2
)
≤ b2

(
1 + 1

εn
‖rn−1 (·)‖2

)
, i.e.

the variance of the error is controlled.
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Hypotheses on the steps and the bandwidth

The sequences (ρn), (εn) and (ηn) must be positive and satisfy:∑
ρn = ∞,∑ (ρn)

2

εn
< ∞,

and
∑

b1ρnηn < ∞.

These hypotheses are quite similar to those found in other
stochastic approximation algorithms with biased estimates such as
in [Kiefer and Wolfowitz, 1952].

For example, if S = Rd , suitable sequences are ρn = 1
n , εn = 1√

n

and ηn = ε
1
d
n .
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Previous works

Many authors [Kushner and Clark, 1978, Kulkarni and Horn, 1996,
Delyon, 1996, Chen and White, 1998] and especially
[Hiriart-Urruty, 1975] have proved the convergence of this kind of
algorithms, but these approaches have limitations that make them
difficult to use in our case:

Either they are restricted to the finite dimensional case;

Or they cannot cope with constraints on u.

But the main limitation in our case is that in an infinite
dimensional space, it is difficult to obtain an implementable
unbiased estimate of a descent direction.

A more general, perturbed gradient framework for the previous
theorem can be found in [Barty et al., 2005a].
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Bermudan option pricing
Problem description

Similarly to [Van Roy and Tsitsiklis, 2001], we try to price a
Bermudan put option where exercise dates are restricted to
equispaced dates t in 0, . . . ,T . The underlying price Xt follow a
discretized Black-Scholes [Black and Scholes, 1973] dynamic:

ln
Xt+1

Xt
= r − 1

2
σ2 + σηt

where (ηt) is a Gaussian white noise of variance unity and r is the
risk free interest rate. The strike is s, and the intrinsic option price
is g (x) = max (0, s − x) when the price is x . Let the discount
factor α = e−r .

Kengy Barty, Jean-Sébastien Roy, Cyrille Strugarek Temporal Difference Learning with Kernels



Agenda
Stochastic approximation

Convergence of the algorithm
Application to pricing

Conclusion
Bibliography

Problem setting
Numerical results

Bermudan option pricing
Objective

Let x0 the price at t = 0. Our objective is to evaluate the value of
the option:

max
τ

E (ατg (Xτ ))

where τ is taken among the stopping times adapted to the
filtration induced by the price process (Xt).

Let Jt (x) the option value at time t if the price Xt is equal to x .
Since the option must be exercised before T + 1, we have:
JT+1 (x) = 0. Therefore, for all t ≤ T :

Jt (x) = max (g (x) , αE (Jt+1 (Xt+1)|Xt = x))
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Bermudan option pricing
Q function

Let Qt (x) the expected gain at t if we do not exercise the option:

Qt (x) = αE (Jt+1 (Xt+1)|Xt = x)

We derive the fixed point equation:

Qt (x) = αE (max (g (Xt+1) ,Qt+1 (Xt+1))|Xt = x)

which by letting Q = (Qt)t , can be expressed as Q = H (Q) with
H a suitable contraction mapping.

The update is given for all t by:

Qn
t (·) = Qn−1

t (·) + ρn∆
n−1
t

(
xn
t , xn

t+1

) 1

εn
Kn (xn

t , ·)

∆n−1
t

(
x , x ′

)
= α max

(
g

(
x ′

)
,Qn

t+1

(
x ′

))
− Qn−1

t (x)
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Bermudan option pricing
100 iterates

 1 2 3 4 5 6 7 8 9
      1e-05

     0.0001
      0.001

       0.01
        0.1

          1
         10

 0
 0.2
 0.4
 0.6
 0.8

 1

t
x

 1 2 3 4 5 6 7 8 9
      1e-05

     0.0001
      0.001

       0.01
        0.1

          1
         10

-0.5

 0

 0.5

t
x

Q100 Q100 − Q∗
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Problem setting
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Bermudan option pricing
1000 iterates
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Kengy Barty, Jean-Sébastien Roy, Cyrille Strugarek Temporal Difference Learning with Kernels



Agenda
Stochastic approximation

Convergence of the algorithm
Application to pricing

Conclusion
Bibliography

Problem setting
Numerical results

Bermudan option pricing
10000 iterates
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Bermudan option pricing
Convergence speed
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Conclusion

I have presented a convergent nonparametric method for dynamic
programming that does not require an a priori discretization. The
method is easy to implement, and the ideas can be used to solve
closed loop stochastic programming problems [Barty et al., 2005b].
Many extensions are possible, notably:

Accelerate the convergence using larger step sizes and
averaging [Polyak and Juditsky, 1992];

Define good heuristics for the window and the steps;

Extend our results to Q-Learning. Our first experiments shows
it should be possible.

More importantly, the numerical behavior of the algorithm in high
dimensional state space is still unknown: we plan to experiment
this soon.
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aléatoires, (735):21–41.

Barty, K., Roy, J.-S., and Strugarek, C. (2005a).
A perturbed gradient algorithm in hilbert spaces.
Optimization Online.
http://www.optimization-online.org/DB_HTML/2005/
03/1095.html.
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